Amino Acids

, Volume 36, Issue 2, pp 209–217 | Cite as

Plasma catecholamine and nephrine responses to brief intermittent maximal intensity exercise

  • Richard M. Bracken
  • Denise M. Linnane
  • Stephen Brooks
Original Article


Catecholamines (noradrenaline, NA; adrenaline, AD; dopamine, DA) influence the metabolic and cardiovascular responses to exercise. However, changes in catecholamine metabolism during exercise are unclear. Plasma normetanephrine (NMET), metanephrine (MET) and catecholamine responses to a laboratory-based model of games-type exercise were examined. Twelve healthy men completed a resting control trial and a trial consisting of ten 6 s cycle ergometer sprints interspersed with 30 s recovery, in randomised order. Resting and post-sprint venous blood samples were taken. Plasma NA and AD increased after each sprint but DA was unaltered. Plasma nephrines increased significantly from sprint 4 onwards with peak NMET increasing 60% to 0.76 ± 0.19 nmol l−1 and MET 230% to 0.37 ± 0.16 nmol l−1 from resting values (< 0.05). The results demonstrate increased catecholamine metabolism via elevated catechol-O-methyl transferase activity during intermittent sprinting. The results may aid regulation of the metabolic and cardiovascular responses to exercise by maintaining tissue adrenoceptor sensitivity to circulating catecholamines.


Metanephrine Normetanephrine Dopamine Intermittent exercise 


  1. Balsom PD, Gaitanos GC, Ekblom B, Sjödin B (1994) Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physiol Scand 152(3):279–285PubMedCrossRefGoogle Scholar
  2. Bracken RM, Linnane DM, Brooks S (2005) Alkalosis and the plasma catecholamine response to high intensity exercise in man. Med Sci Sports Exerc 37(2):227–233PubMedCrossRefGoogle Scholar
  3. Brooks S, Nevill ME, Meleagros L, Lakomy HKA, Hall GM, Bloom SR, Williams C (1990) The hormonal responses to repetitive brief maximal exercise in humans. Eur J App Physiol 60:144–148CrossRefGoogle Scholar
  4. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J App Physiol 37(2):247–248Google Scholar
  5. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349PubMedCrossRefGoogle Scholar
  6. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G (1990) Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 70(4):963–985PubMedGoogle Scholar
  7. Febbraio MA, Lambert DL, Starkie RL, Proietto J, Hargreaves M (1998) Effect of epinephrine on muscle glycogenolysis during exercise in trained men. J Appl Physiol 84(2):465–470PubMedCrossRefGoogle Scholar
  8. Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719PubMedGoogle Scholar
  9. Goldstein DS, Eisenhofer G, Kopin I (2003) Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Therap 305(3):800–811CrossRefGoogle Scholar
  10. Hagberg JM, Hickson RC, McLane JA., Ehsani AA, Winder WW (1979) Disappearance of norepinephrine from the circulation following strenuous exercise. J Appl Physiol 47(6):1311–1314PubMedCrossRefGoogle Scholar
  11. Kaiser P, Tesch PA, Frisk-Holmberg M, Juhlin-Dannfelt A, Kaijser L (1986) Effect of beta 1-selective and non-selective beta-blockade on work capacity and muscle metabolism. Clin Physiol 6(2):197–207PubMedCrossRefGoogle Scholar
  12. Kjær M (1999) Neuroendocrine regulation during exercise. In: Hargreaves M, Thompson M (eds) Biochemistry of exercise X. Human kinetics, pp 47–55Google Scholar
  13. Kjær M, Christensen NJ, Sonne B, Richter EA, Galbo H (1985) Effect of exercise on epinephrine turnover in trained and untrained male subjects. J Appl Physiol 59(4):1061–1067PubMedGoogle Scholar
  14. Lakomy HKA (1986) Measurement of work and power using friction loaded cycle ergometers. Ergonomics 29(4):509–517PubMedCrossRefGoogle Scholar
  15. Lenders JWM, Keiser HR, Goldstein DS, Willemsen JJ, Friberg P, Jacobs M-C, Kloppenborg PWC, Thien T Eisenhofer G (1995) Plasma metanephrines in the diagnosis of pheochromocytoma. Ann Inter Med 123(2):101–109Google Scholar
  16. Leuenberger U, Sinoway L, Gubin S, Gaul L, Davis D, Zelis R (1993) Effects of exercise intensity and duration on norepinephrine spillover and clearance in humans. J Appl Physiol 75(2):668–674PubMedGoogle Scholar
  17. Maughan RJ (1982) A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20-ul blood sample. Clin Chim Acta 122(2):231–240PubMedCrossRefGoogle Scholar
  18. Miura Y, Watanabe T, Noshiro T, Shimizu K, Kusakari T, Akama H, Shibukawa S, Miura W, Ohzeki T, Takahashi M, Sano N (1995) Plasma free dopamine: physiological variability and pathophysiological significance. Hyperten Res 18:S65–S72CrossRefGoogle Scholar
  19. Murphy MB (2000) Dopamine: a role in the pathogenesis and treatment of hypertension. J Hum Hypert 14(S1):S47–S50CrossRefGoogle Scholar
  20. Odink J, Van den Berg EJ, Van den Berg H, Bogaards JJP Thissen JTNM (1986) Effect of workload on free and sulphoconjugated catecholamines, prolactin and cortisol. Int J Sports Med 7:352–357PubMedCrossRefGoogle Scholar
  21. Pequignot JM, Peyrin L, Mayet MH, Flandrois R (1978) Metabolic adrenergic changes during submaximal exercise and in the recovery period in man. J Appl Physiol 47:701–705CrossRefGoogle Scholar
  22. Raber W, Raffesberg W, Waldhausl W, Gasic S, Roden M (2003) Exercise induces excessive normetanephrine responses in hypertensive diabetic patients. Eur J Clin Invest 33(6):480–487PubMedCrossRefGoogle Scholar
  23. Sagnol M, Claustre J, Cottet-Emard JM, Pequignot JM, Fellmann N, Coudert J, Peyrin L (1990) Plasma free and sulphated catecholamines after ultra-long exercise and recovery. Eur J Appl Physiol 60:91–97CrossRefGoogle Scholar
  24. Sakai T, Maeda H, Matsumoto N, Miura S, Kinoshita A, Sasaguri M, Ideishi M, Tanaka H, Shindo M, Arakawa K (1995) Plasma free and sulfoconjugated dopamine before and after a half-marathon. Hyperten Res 18(suppl 1):S161–S163CrossRefGoogle Scholar
  25. Strobel G, Freidmann B, Siebold R, Bartsch P (1999) Effect of severe exercise on plasma catecholamines in differently trained athletes. Med Sci Sports Ex 31(4):560–565CrossRefGoogle Scholar
  26. Strobel G, Werle E, Weicker H (1990) Isomer specific kinetics of dopamine β-hydroxylase and arylsulfatase towards catecholamine sulfates. Biochem Intern 20(2):343–351Google Scholar
  27. Tidgren B, Hjemdahl P, Theodorsson E, Nussberger J (1991) Renal neurohormonal and vascular responses to dynamic exercise in humans. J Appl Physiol 70(5):2279–2286PubMedGoogle Scholar
  28. Wallin BG, Sundolf G, Eriksson BM, Dominiak P, Grobecker H, Lindblad LE (1981) Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol Scand 111:69–73PubMedCrossRefGoogle Scholar
  29. Weltman A, Wood CW, Womack CJ, Davis SE, Blumer JL, Alvarez J, Sauer K, Gaesser GA (1994) Catecholamine and blood lactate responses to incremental rowing and running exercise. J App Physiol 76(3):1144–1149CrossRefGoogle Scholar
  30. Winder WW, Yang HT, Jaussi AW, Hopkins CR (1987) Epinephrine, glucose, and lactate infusion in exercising adrenodemedullated rats. J Appl Physiol 62(4):1442–1447PubMedGoogle Scholar
  31. Young JB Landsberg L (1998) Catecholamines and the adrenal medulla. In Wilson JD, Foster DW, Kronenberg HM, Larsen PR (eds) Williams textbook of endocrinology, 9th edn. WB Saunders and Co., Philadelphia, pp 665–728Google Scholar
  32. Zamecnik J (1997) Quantification of epinephrine, norepinephrine, dopamine, metanephrine and normetanephrine in human plasma using negative ion chemical ionization GC-MS. Can J Anal Sci Spectroscop 42(4):106–112Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Richard M. Bracken
    • 1
  • Denise M. Linnane
    • 2
  • Stephen Brooks
    • 3
  1. 1.Research Centre for Sport and Exercise Science, School of Human SciencesSwansea UniversitySwanseaUK
  2. 2.Centre for Human SciencesHampshireUK
  3. 3.Department of Physiology and Sport Sciences, Faculty of Health and Human SciencesCoventry UniversityCoventryUK

Personalised recommendations