Amino Acids

, Volume 35, Issue 1, pp 89–97 | Cite as

Post exercise carbohydrate–protein supplementation: phosphorylation of muscle proteins involved in glycogen synthesis and protein translation

  • J. L. Ivy
  • Z. Ding
  • H. Hwang
  • L. C. Cialdella-Kam
  • P. J. Morrison


The enzymes Akt, mTOR, p70S6K, rpS6, GSK3, and glycogen synthase interact in the control of protein and/or glycogen synthesis in skeletal muscle, and each has been found to respond to exercise and nutrient supplementation. In the present study, we tested the hypothesis that nutrient supplementation post exercise, in the form of a carbohydrate–protein (CHO–PRO) supplement, would alter the phosphorylation state of these enzymes in a manner that should increase muscle protein and glycogen synthesis above that produced by exercise alone. After a 45 min cycling session followed by sprints and again 15 min later, the subjects (n = 8) ingested 400 ml of a CHO–PRO drink (7.8% dextrose and 1.8% protein-electrolyte) or a placebo drink, as assigned using a randomized, counter-balanced design with repeated measures. Biopsies of the vastus lateralis were taken before exercise and at 45 min of recovery. At 45 min after supplementation, CHO–PRO treatment yielded greater phosphorylation of Akt (65%), mTOR (86%), rpS6 (85-fold), and GSK3α/β (57%) than pre-exercise levels (p < 0.05). Although p70S6k showed an exercise response after 45 min, there were no differences between treatments. Glycogen synthase (GS) phosphorylation was significantly reduced 45 min after exercise for both treatments, but the reduction in phosphorylation was greatest during the CHO–PRO treatment (3-fold decrease; p < 0.05), indicating greater activation of GS following supplementation. No difference between treatments was detected prior to exercise for any of the enzymes. These results suggest that a post exercise CHO–PRO supplement alters the phosporylation levels of the enzymes tested in a manner that should accelerate muscle glycogen synthesis and protein initiation during recovery from cycling exercise.

Keywords: Akt – mTOR – p70S6k – rpS6 – Glycogen – Protein synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony, TG, McDaniel, BJ, Knoll, P, Bunpo, P, Paul, GL, McNurlan, MA 2007Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male ratsJ Nutr137357362PubMedGoogle Scholar
  2. Armstrong, JL, Bonavaud, SM, Toole, BJ, Yeaman, SJ 2001Regulation of glycogen synthesis by amino acids in cultured human muscle cellsJ Biol Chem276952956PubMedCrossRefGoogle Scholar
  3. Biolo, G, Declan Fleming, RY, Wolfe, RR 1995aPhysiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscleJ Clin Invest95811819CrossRefGoogle Scholar
  4. Biolo, G, Maggi, SP, Williams, BD, Tipton, KD, Wolfe, RR 1995bIncreased rates of muscle protein turnover and amino acid transport after resistance exercise in humansAm J Physiol268E514E520Google Scholar
  5. Biolo, G, Tipton, KD, Klein, S, Wolfe, RR 1997An abundant supply of amino acids enhances the metabolic effect of exercise on muscle proteinAm J Physiol273E122E129PubMedGoogle Scholar
  6. Biolo, G, Williams, BD, Fleming, RY, Wolfe, RR 1999Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exerciseDiabetes48949957PubMedCrossRefGoogle Scholar
  7. Blomstrand, E, Eliasson, J, Karlsson, HK, Kohnke, R 2006Branched-chain amino acids activate key enzymes in protein synthesis after physical exerciseJ Nutr136269S273SPubMedGoogle Scholar
  8. Bolster, DR, Crozier, SJ, Kimball, SR, Jefferson, LS 2002AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signalingJ Biol Chem2772397723980PubMedCrossRefGoogle Scholar
  9. Bolster, DR, Kubica, N, Crozier, SJ, Williamson, DL, Farrell, PA, Kimball, SR, Jefferson, LS 2003Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscleJ Physiol553213220PubMedCrossRefGoogle Scholar
  10. Borsheim, E, Tipton, KD, Wolf, SE, Wolfe, RR 2002Essential amino acids and muscle protein recovery from resistance exerciseAm J Physiol283E648E657Google Scholar
  11. Bos, C, Metges, CC, Gaudichon, C, Petzke, KJ, Pueyo, ME, Morens, C, Everwand, J, Benamouzig, R, Tome, D 2003Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humansJ Nutr13313081315PubMedGoogle Scholar
  12. Brown, EJ, Beal, PA, Keith, CT, Chen, J, Shin, TB, Schreiber, SL 1995Control of p70 s6 kinase by kinase activity of FRAP in vivoNature377441446PubMedCrossRefGoogle Scholar
  13. Byfield, MP, Murray, JT, Backer, JM 2005hVps34 is a nutrient-regulated lipid kinase required for activation of p70 s6 kinaseJ Biol Chem2803307633082PubMedCrossRefGoogle Scholar
  14. Coffey, VG, Zhong, Z, Shield, A, Canny, BJ, Chibalin, AV, Zierath, JR, Hawley, JA 2006Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humansFASEB20190210Google Scholar
  15. Cross, DA, Alessi, DR, Cohen, P, Andjelkovich, M, Hemmings, BA 1995Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase BNature378785789PubMedCrossRefGoogle Scholar
  16. Cuthbertson, D, Smith, K, Babraj, J, Leese, G, Waddell, T, Atherton, P, Wackerhage, H, Taylor, PM, Rennie, MJ 2005Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscleFASEB19422424Google Scholar
  17. Dreyer, HC, Fujita, S, Cadenas, JG, Chinkes, DL, Volpi, E, Rasmussen, BB 2006Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscleJ Physiol576613624PubMedCrossRefGoogle Scholar
  18. Eliasson, J, Elfegoun, T, Nilsson, J, Kohnke, R, Ekblom, BT, Blomstrand, E 2006Maximal lengthening contractions increase p70S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supplyAm J Physiol291E1197E1205Google Scholar
  19. Escobar, J, Frank, JW, Suryawan, A, Nguyen, HV, Kimball, SR, Jefferson, LS, Davis, TA 2005Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activationAm J Physiol288E914E921Google Scholar
  20. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB (2007) Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol [Epub.]Google Scholar
  21. Gao, X, Zhang, Y, Arrazola, P, Hino, O, Kobayashi, T, Yeung, RS, Ru, B, Pan, D 2002Tsc tumour suppressor proteins antagonize amino-acid-TOR signallingNat Cell Biol4699704PubMedCrossRefGoogle Scholar
  22. Hara, K, Yonezawa, K, Kozlowski, MT, Sugimoto, T, Andrabi, K, Weng, QP, Kasuga, M, Nishimoto, I, Avruch, J 1997Regulation of eIF-4E BP1 phosphorylation by mTORJ Biol Chem2722645726463PubMedCrossRefGoogle Scholar
  23. Hara, K, Yonezawa, K, Weng, QP, Kozlowski, MT, Belham, C, Avruch, J 1998Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanismJ Biol Chem2731448414494PubMedCrossRefGoogle Scholar
  24. Hohorst, HJ 1965Determination of L-lactate of LDH and DPNBergmeyer, HU eds. Methods of enzymatic analysisAcademicNew York266270Google Scholar
  25. Ivy, JL, Goforth, HW,Jr, Damon, BM, McCauley, TR, Parsons, EC, Price, TB 2002Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplementJ Appl Physiol9313371344PubMedGoogle Scholar
  26. Karlsson, HK, Nilsson, PA, Nilsson, J, Chibalin, AV, Zierath, JR, Blomstrand, E 2004Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exerciseAm J Physiol287E1E7CrossRefGoogle Scholar
  27. Kimball, SR, Farrell, PA, Jefferson, LS 2002Invited Review: role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exerciseJ Appl Physiol9311681180PubMedGoogle Scholar
  28. Kimball, SR, Jefferson, LS 2004aAmino acids as regulators of gene expressionNutr Metab (Lond)13CrossRefGoogle Scholar
  29. Kimball, SR, Jefferson, LS 2004bRegulation of global and specific mRNA translation by oral administration of branched-chain amino acidsBiochem Biophys Res Commun313423427CrossRefGoogle Scholar
  30. Koopman, R, Beelen, M, Stellingwerff, T, Pennings, B, Saris, NH, Kies, AK, Kuipers, H, van Loon, LJ 2007Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesisAm J Physiology Endo Metab293E833E884CrossRefGoogle Scholar
  31. Koopman, R, Wagenmakers, AJ, Manders, RJ, Zorenc, AH, Senden, JM, Gorselink, M, Keizer, HA, van Loon, LJ 2005Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjectsAm J Physiol288E645E653CrossRefGoogle Scholar
  32. Koopman, R, Zorenc, AH, Gransier, RJ, Cameron-Smith, D, van Loon, LJ 2006Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibersAm J Physiol290E1245E1252Google Scholar
  33. Kuo, CH, Browning, KS, Ivy, JL 1999aRegulation of GLUT4 protein expression and glycogen storage after prolonged exerciseActa Physiol Scand165193201CrossRefGoogle Scholar
  34. Kuo, CH, Hunt, DG, Ding, Z, Ivy, JL 1999bEffect of carbohydrate supplementation on postexercise GLUT-4 protein expression in skeletal muscleJ Appl Physiol8722902295Google Scholar
  35. Liu, Z, Wu, Y, Nicklas, EW, Jahn, LA, Price, WJ, Barrett, EJ 2004Unlike insulin, amino acids stimulate p70S6K but not GSK-3 or glycogen synthase in human skeletal muscleAm J Physiol286E523E528CrossRefGoogle Scholar
  36. Lowry, OH, Rosebrough, NJ, Farr, AL, Randall, RJ 1951Protein measurement with the Folin phenol reagentJ Biol Chem193265275PubMedGoogle Scholar
  37. Mascher, H, Andersson, H, Nilsson, P-A, Ekblom, B, Blomstrand, E 2007Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exerciseActa Physiol1916775CrossRefGoogle Scholar
  38. Miller, SL, Tipton, KD, Chinkes, DL, Wolf, SE, Wolfe, RR 2003Independent and combined effects of amino acids and glucose after resistance exerciseMed Sci Sports Exerc35449455PubMedCrossRefGoogle Scholar
  39. Nader, GA, Esser, KA 2001Intracellular signaling specificity in skeletal muscle in response to different modes of exerciseJ Appl Physiol9019361942PubMedGoogle Scholar
  40. Nielsen, JN, Richter, EA 2003Regulation of glycogen synthase in skeletal muscle during exerciseActa Physiol Scand178309319PubMedCrossRefGoogle Scholar
  41. Nobukuni, T, Joaquin, M, Roccio, M, Dann, SG, Kim, SY, Gluati, P, Byfield, MP, Backer, JM, Natt, F, Bos, JL, Zwartkruis, FJT, Thomas, G 2005Amino acids mediated mTOR/raptor signaling through activation of cass 3 phosphatidylinositol 3 OH-kinaseProc Natl Acad Sci USA1021423814243PubMedCrossRefGoogle Scholar
  42. Pende, M, Um, SH, Mieulet, V, Sticker, M, Goss, VL, Mestan, J, Mueller, M, Fumagalli, S, Kozma, SC, Thomas, G 2004S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathwayMol Cell Biol2431123124PubMedCrossRefGoogle Scholar
  43. Phillips, SM, Tipton, KD, Aarsland, A, Wolf, SE, Wolfe, RR 1997Mixed muscle protein synthesis and breakdown after resistance exercise in humansAm J Physiol273E99E107PubMedGoogle Scholar
  44. Roux, PP, Blenis, J 2004ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functionsMicrobiol Mol Biol Rev68320344PubMedCrossRefGoogle Scholar
  45. Sakamoto, K, Arnolds, DE, Ekberg, I, Thorell, A, Goodyear, LJ 2004Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscleBiochem Biophys Res Commun319419425PubMedCrossRefGoogle Scholar
  46. Srivastava, AK, Pandey, SK 1998Potential mechanism(s) involved in the regulation of glycogen synthesis by insulinMol Cell Biochem182135141PubMedCrossRefGoogle Scholar
  47. Tipton, KD, Ferrando, AA, Phillips, SM, Doyle, D,Jr, Wolfe, RR 1999Postexercise net protein synthesis in human muscle from orally administered amino acidsAm J Physiol276E628E634PubMedGoogle Scholar
  48. Towbin, H, Staehelin, T, Gordon, J 1992Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applicationsBiotechnol24145149Google Scholar
  49. Um, SH, D’Alessio, D, Thomas, G 2006Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1Cell Metab3393402PubMedCrossRefGoogle Scholar
  50. Williamson, DL, Kubica, N, Kimball, SR, Jefferson, LS 2006Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscleJ Physiol573497510PubMedCrossRefGoogle Scholar
  51. Yeaman, SJ, Armstrong, JL, Bonavaud, SM, Poinasamy, D, Pickersgill, L, Halse, R 2001Regulation of glycogen synthesis in human muscle cellsBiochem Soc Trans29537541PubMedCrossRefGoogle Scholar
  52. Zawadzki, KM, Yaspelkis, BB,3rd, Ivy, JL 1992Carbohydrate-protein complex increases the rate of muscle glycogen storage after exerciseJ Appl Physiol7218541859PubMedGoogle Scholar
  53. Zhang, Y, Gao, X, Saucedo, LJ, Ru, B, Edgar, BA, Pan, D 2003Rheb is a direct target of the tuberous sclerosis tumour suppressor proteinsNatu Cell Biol5578581CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. L. Ivy
    • 1
  • Z. Ding
    • 1
  • H. Hwang
    • 1
  • L. C. Cialdella-Kam
    • 1
  • P. J. Morrison
    • 1
  1. 1.Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health EducationThe University of TexasAustinUSA

Personalised recommendations