Amino Acids

, Volume 34, Issue 1, pp 25–33

Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins

Review Article

Summary.

Thermophilic proteins show substantially higher intrinsic thermal stability than their mesophilic counterparts. Amino acid composition is believed to alter the intrinsic stability of proteins. Several investigations and mutagenesis experiment have been carried out to understand the amino acid composition for the thermostability of proteins. This review presents some generalized features of amino acid composition found in thermophilic proteins, including an increase in residue hydrophobicity, a decrease in uncharged polar residues, an increase in charged residues, an increase in aromatic residues, certain amino acid coupling patterns and amino acid preferences for thermophilic proteins. The differences of amino acids composition between thermophilic and mesophilic proteins are related to some properties of amino acids. These features provide guidelines for engineering mesophilic protein to thermophilic protein.

Keywords: Thermophilic protein – Thermostability – Amino acid composition – Amino acid coupling pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argos, P, Rossmann, MG, Grau, UM, Suborn, H, Frank, G, Tratschin, JD 1979Thermal stability and protein structureBiochemistry1856985703PubMedCrossRefGoogle Scholar
  2. Bartesaghi, S, Ferrer-Sueta, G, Peluffo, G, Valez, V, Zhang, H, Kalyanaraman, B, Radi, R 2007Protein tyrosine nitration in hydrophilic and hydrophobic environmentsAmino Acids32501515PubMedCrossRefGoogle Scholar
  3. Beeby, M, O’Connor, BD, Ryttersgaard, C, Boutz, DR, Perry, LJ, Yeates, TO 2005The genomics of disulfide bonding and protein stabilization in thermophilesPLoS Biol3e309PubMedCrossRefGoogle Scholar
  4. Britton, KL, Baker, PJ, Borges, KM, Engel, PC, Pasquo, A, Rice, DW, Robb, FT, Scandurra, R, Satillman, TJ, Yip, KS 1995Insights into thermalstability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Thermococcus litoralisEur J Biochem229688695PubMedCrossRefGoogle Scholar
  5. Cacciatore, I, Cocco, A, Costa, M, Fontana, M, Lucente, G, Pecci, L, Pinnen, F 2005Biochemical properties of new synthetic carnosine analogues containing the residue of 2,3-diaminopropionic acid: the effect of N-acetylationAmino Acids287783PubMedCrossRefGoogle Scholar
  6. Catanzano, F, Graziano, G, Capasso, S, Barone, G 1997Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease AProtein Sci616821693PubMedGoogle Scholar
  7. Chakravarty, S, Varadarajan, R 2000Elucidation of determinants of protein stability through genome sequence analysisFEBS4706569CrossRefGoogle Scholar
  8. Chakravarty, S, Varadarajan, R 2002Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based studyBiochemistry4181528161PubMedCrossRefGoogle Scholar
  9. Creighton, TE 1997Proteins: structures and molecular properties2Freeman & CompanyNew York120Google Scholar
  10. Das, R, Gerstein, M 2000The stability of thermophilic proteins: a study based on comprehensive genome comparisonFunct Integr Genomics17688PubMedGoogle Scholar
  11. Das, S, Paul, S, Bag, SK, Dutta, C 2006Analysis of nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptationBMC Genomics7186PubMedCrossRefGoogle Scholar
  12. D’Auria, S, Ausili, A, Marabotti, A, Varriale, A, Scognamiglio, V, Staiano, M, Bertoli, E, Rossi, M, Tanfani, F 2006Binding of glucose to the d-galactose/d-glucose-binding protein from Escherichia coli restores the native protein secondary structure and thermostability that are lost upon calcium depletionJ Biochem (Tokyo)139213221Google Scholar
  13. De Farias, ST, Bonato, MC 2002Preferred codons and amino acid couples in hyperthermophilesGenome Biol3118CrossRefGoogle Scholar
  14. Denisov, VP, Venu, K, Peters, J, Hörlein, HD, Halle, B 1997Orientational disorder and entropy of water in protein cavitiesJ Phys Chem10193809389Google Scholar
  15. Diao Y, Ma D, Wen Z, Yin J, Xiang J, Li M (2007) Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and Lempel-Ziv complexity. Amino Acids [Epub ahead of print]Google Scholar
  16. Dill, KA 1990Dominant forces in protein foldingBiochem2971337155CrossRefGoogle Scholar
  17. Eichler, J, Adams, MWW 2005Posttranslational protein modification in archaeaMicrobiol Mol Biol Rev69393425PubMedCrossRefGoogle Scholar
  18. Estell, DA, Graycar, TP, Wells, JA 1985Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidationJ Biol Chem26065186521PubMedGoogle Scholar
  19. Farias, ST, Bonato, MC 2003Preferred amino acids and thermostabilityGenet Mol Res2383393PubMedGoogle Scholar
  20. Farias, ST, Van Der Linden, MG, Rego, TG, Araujo, DA, Bonato, MC 2004Thermo-search: lifestyle and thermostability analysisIn Silico Biol430Google Scholar
  21. Febbraio, F, Andolfo, A, Tanfani, F, Briante, R, Gentile, F, Formisano, S, Vaccaro, C, Scire, A, Bertoli, E, Pucci, P, Nucci, R 2004Thermal stability and aggregation of sulfolobus solfataricus {beta}-glycosidase are dependent upon the N-{epsilon}-methylation of specific lysyl residues: critical role of in vivo post-translational modificationsJ Biol Chem2791018510194PubMedCrossRefGoogle Scholar
  22. Fields, PA 2001Review: protein function at thermal extremes: balancing stability and flexibilityComp Biochem Physiol A129417431CrossRefGoogle Scholar
  23. Fukuchi, S, Yoshimune, K, Wakayama, M, Moriguchi, M, Nishikawa, K 2003Unique amino acid composition of proteins in halophilic bacteriaJ Mol Biol327347357PubMedCrossRefGoogle Scholar
  24. Futterer, O, Angelov, A, Liesegang, H, Gottschalk, G, Schleper, C, Schepers, B, Dock, C, Antranikian, G, Liebl, W 2004Genome sequence of Picrophilus torridus and its implications for life around pH 0Proc Natl Acad Sci USA10190919096PubMedCrossRefGoogle Scholar
  25. Gredicak M, Kolonic A, Jeric I (2007) Novel chloroenyne-modified amino acid derivatives. Amino Acids Jul 6 [Epub ahead of print]Google Scholar
  26. Gromiha, MM, Oobatake, M, Sarai, A 1999Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteinsBiophys Chem825167PubMedCrossRefGoogle Scholar
  27. Haney, PJ, Badger, JH, Buldak, GL, Reich, CI, Woese, CR, Olsen, GJ 1999Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus speciesBiochem9635783583Google Scholar
  28. Haslbeck, M, Franzmann, T, Weinfurtner, D, Buchner, J 2005Some like it hot: the structure and function of small heat-shock proteinsNat Struct Mol Biol12842846PubMedCrossRefGoogle Scholar
  29. Ikai, A 1980Thermostability and aliphatic index of globular proteinsJ Biochem (Tokyo)8818951898Google Scholar
  30. Jaenicke, R 1996Stability and folding of ultrastable proteins: eye lens crystalline and enzymes from thermophilesFASEB J108492PubMedGoogle Scholar
  31. Jaenicke, R, Bohm, G 1998The stability of proteins in extreme environmentsCurr Opin Struct Biol8738748PubMedCrossRefGoogle Scholar
  32. Kannan, N, Vishveshwara, S 2000Aromatic clusters: a determinant of thermal stability of thermophilic proteinsProtein Eng13753761PubMedCrossRefGoogle Scholar
  33. Kawashima, T, Amano, A, Koike, A, Makino, S, Higuchi, S, Kawashima-Ohya, Y, Watanabe, K, Yamazaki, M, Kanehori, K, Kawamoto, K, Nunoshiba, T, Yamamoto, Y, Aramaki, H, Makino, K, Suzuki, M 2000Archaeal adaptation to higher temperatures revealed by genomic sequence of thermoplasma caniumProc Natl Acad Sci USA971425714262PubMedCrossRefGoogle Scholar
  34. Kumar, S, Nussinov, R 2001How do thermophilic proteins deal with heat?Cell Mol Life Sci5812161233PubMedCrossRefGoogle Scholar
  35. Kumar, S, Tsai, CJ, Nussinov, R 2000Factors enhancing protein thermostabilityProtein Eng13179191PubMedCrossRefGoogle Scholar
  36. Kuric L (2007) The digital language of amino acids. Amino Acids 2007 Jan 26 [Epub ahead of print]Google Scholar
  37. Ladbury, JE, Wynn, R, Thomson, JA, Sturtevant, JM 1995Substitution of charged residues into the hydrophobic core of Escherichia coli thioredoxin result in a change in heat capacity of the native proteinBiochem3421482152CrossRefGoogle Scholar
  38. Li, WF, Zhou, XX, Lu, P 2005Structural features of thermozymesBiotechnol Adv23271281PubMedCrossRefGoogle Scholar
  39. Liang, HK, Huang, CM, Ko, MT, Hwang, JK 2005The amino acid-coupling patterns in thermophilic proteinsProteins Structure Function Bioinformatics595863CrossRefGoogle Scholar
  40. Lin, W, Chan, M, Goh, LL, Sim, TS 2007Molecular basis for thermal properties of Streptomyces thermovulgaris fumarase C hinge at hydrophilic amino acids R163, E170 and S347Appl Microbiol Biotech75329335CrossRefGoogle Scholar
  41. Lopez-Camacho, C, Salgado, J, Lequerica, JL, Madarro, A, Ballestar, E, Franco, L, Polaina, J 1996Amino acid substitutions enhancing thermostability of Bacillus polymyxa beta-glucosidase ABiochem J314833838PubMedGoogle Scholar
  42. Lu, B, Wang, G, Huang, P 1998A comparison of amino acid composition of proteins from thermophiles and mesophilesWei Sheng Wu Xue Bao (Acta Microbiologica Sinica)382025in ChineseGoogle Scholar
  43. Ma, JC, Dougherty, DA 1997The cation-pi interactionChem Rev9713031324PubMedCrossRefGoogle Scholar
  44. Mattos, C 2002Protein-interactions in a dynamic worldTrends Biochem Sci27203208PubMedCrossRefGoogle Scholar
  45. McDonald, JH, Grasso, AM, Rejto, LK 1999Patterns of temperature adaptation in proteins from Methanococcus and BacillusMol Biol Evol1617851790PubMedGoogle Scholar
  46. Mrabet, NT, Van den Broeck, A, Van den Brande, I, Stanssens, P, Laroche, Y, Lambeir, AM, Matthijssens, G, Jenkins, J, Chiadmi, M, van Tilbeurgh, H, Rey, F, Janin, J, Quax, WJ, Lasters, I, De Maeyer, M, Wodak, SJ 1992Arginine residues as stabilizing elements in proteinsBiochem3122392253CrossRefGoogle Scholar
  47. Nagendra, HG, Sukumar, N, Vijayan, M 1998Role of water in plasticity, stability, and action of proteins: the crystal structures of lysozyme at very low levels of hydrationProteins32229240PubMedCrossRefGoogle Scholar
  48. Nakashima, H, Fukuchi, S, Nishikawa, K 2003Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperaturesJ Biochem133507513PubMedCrossRefGoogle Scholar
  49. Olsen, O, Thomsen, KK 1991Improvement of bacterial β-glucanase thermostability by glycosylationJ Gen Microbiol137579585Google Scholar
  50. Pack, SP, Yoo, YJ 2004Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteinsJ Biotechnol111269277PubMedCrossRefGoogle Scholar
  51. Pack, SP, Yoo, YJ 2005Packing-based difference of structural features between thermophilic and mesophilic proteinsInt J Biol Macrom35169174CrossRefGoogle Scholar
  52. Panasik, N, Brenchley, JE, Farber, GK 2000Distributions of structural features contributing to thermostability in mesophilic and thermophilic alpha/beta barrel glycosyl hydrolasesBiochim Biophys Acta1543189201PubMedGoogle Scholar
  53. Pantazaki AA, Tsolkas GP, Kyriakidis DA (2007) A DING phosphatase in Thermus thermophilus. Amino Acids [Epub ahead of print]Google Scholar
  54. Parthasarathy, S, Murthy, MR 2000Protein thermal stability: insights from atomic displacement parameters (B values)Protein Eng13913PubMedCrossRefGoogle Scholar
  55. Perry, LJ, Wetzel, R 1986Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozymeBiochem25733739CrossRefGoogle Scholar
  56. Ponnuswamy, PK, Muthusamy, R, Manavalan, P 1982Amino acid composition and thermal stability of globular proteinsInt J Biol Macromol4186190CrossRefGoogle Scholar
  57. Rosato, V, Pucello, N, Giuliano, G 2002Evidence for cysteine clustering in thermophilic proteomesTrends Genet18178281CrossRefGoogle Scholar
  58. Russell, RJ, Ferguson, JM, Hough, DW, Danson, MJ, Taylor, GL 1997The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 Å resolutionBiochemistry3699839994PubMedCrossRefGoogle Scholar
  59. Russell, RJ, Hough, DW, Danson, MJ, Taylor, GL 1994The crystal structure of citrate synthase from the thermophilic archaeon thermoplasma acidophilumStructure211571167PubMedCrossRefGoogle Scholar
  60. Sadeghi, M, Naderi-Manesh, H, Zarrabi, M, Ranjbar, B 2006Effective factors in thermostability of thermophilic proteinsBiophys Chem119256270PubMedCrossRefGoogle Scholar
  61. Saunders, NFW, Thomas, T, Curmi, PM, Mattick, JS, Kuczek, E, Slade, R, Davis, J, Franzmann, PD, Boone, D, Rusterholtz, K, Feldman, R, Gates, C, Bench, S, Sowers, K, Kadner, K, Aerts, A, Dehal, P, Detter, C, Glavina, T, Lucas, S, Richardson, P, Larimer, F, Hauser, L, Land, M, Cavicchioli, R 2003Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtoniiGenome Res1315801588PubMedCrossRefGoogle Scholar
  62. Scandurra, R, Consalvi, V, Chiaraluce, R, Politi, L, Engel, PC 1998Protein thermostatbility in extremophilesBiochimie80933941PubMedCrossRefGoogle Scholar
  63. Schmidinger, H, Hermetter, A, Birner-Gruenberger, R 2006Activity-based proteomics: enzymatic activity profiling in complex proteomesAmino Acids30333350PubMedCrossRefGoogle Scholar
  64. Schumann, J, Bohm, G, Schumacher, G, Rudolph, R, Jaenicke, R 1993Stabilization of creatinase from Pseudomonas putida by random mutagenesisProtein Sci216121620PubMedCrossRefGoogle Scholar
  65. Singer, GAC, Hickey, DA 2003Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide contentGene3173947PubMedCrossRefGoogle Scholar
  66. Stetter, KO 1996Hyperthermophilic prokaryotesFEMS Microbiol Rev18149158CrossRefGoogle Scholar
  67. Suhre, K, Claverie, JM 2003Genomic correlates of hyperthermostability, an updateJ Biol Chem2781719817202PubMedCrossRefGoogle Scholar
  68. Szilágyi, A, Závodszky, P 2000Structural differences between mesophilic moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive surveyStructure8493504PubMedCrossRefGoogle Scholar
  69. Tanaka, Y, Tsumoto, K, Yasutake, Y, Umetsu, M, Yao, M, Fukada, H, Tanaka, I, Kumagai, I 2004How oligomerization contributes to the thermostability of an archaeon protein. Protein l-isoaspartyl-O-methyltransferase from Sulfolobus tokodaiiJ Biol Chem2793295732967PubMedCrossRefGoogle Scholar
  70. Tekaia, F, Yeramian, E, Dujon, B 2002Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysisGene2975160PubMedCrossRefGoogle Scholar
  71. Thompson, MJ, Eisenberg, D 1999Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostabilityJ Mol Biol290595604PubMedCrossRefGoogle Scholar
  72. Tomazic, SJ, Klibanov, AM 1988Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylasesJ Biol Chem26330863091PubMedGoogle Scholar
  73. Trivedi, S, Gehlot, HS, Rao, SR 2006Protein thermostability in Archaea and EubacteriaGenet Mol Res5816827PubMedGoogle Scholar
  74. Van den Burg, B, Vriend, G, Veltman, OR, Venema, G, Eijsink, VGH 1998Engineering an enzyme to resist boilingProc Natl Acad Sci USA9520562060PubMedCrossRefGoogle Scholar
  75. Veltman, OR, Vriend, G, Middelhoven, PJ, Van Den Burg, B, Venema, G, Eijsink, VGH 1996Analysis of structural determinants of the stability of thermolysinlike proteases by molecular modelling and site-directed mutagenesisProtein Eng911811189PubMedCrossRefGoogle Scholar
  76. Vercauteren FG, Arckens L, Quirion R (2006) Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis. Amino Acids Nov 30 [Epub ahead of print]Google Scholar
  77. Vetriani, C, Maeder, DL, Tolliday, N, Yip, KS, Stillman, TJ, Britton, KL, Rice, DW, Klump, HH, Robb, FT 1998Protein thermostability above 100 degrees C: a key role for ionic interactionsProc Natl Acad Sci USA951230012305PubMedCrossRefGoogle Scholar
  78. Vieille, C, Zeikus, GJ 2001Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostabilityMicrobiol Mol Biol Rev65143PubMedCrossRefGoogle Scholar
  79. Vogt, G, Woell, S, Argos, P 1997Protein thermal stability, hydrogen bonds, and ion pairsJ Mol Biol269631643PubMedCrossRefGoogle Scholar
  80. Watanabe, K, Hata, Y, Kizaki, H, Katsube, Y, Suzuki, Y 1997The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilizationJ Mol Biol269142153PubMedCrossRefGoogle Scholar
  81. Xiao, L, Honig, B 1999Electrostatic contributions to the stability of hyperthermophilic proteinsJ Mol Biol28914351444PubMedCrossRefGoogle Scholar
  82. Xu, Z, Liu, Y, Yang, Y, Jiang, W, Arnold, E, Ding, J 2003Crystal structure of D-Hydantoinase from Burkholderia pickettii at a resolution of 2.7 Angstroms: insights into the molecular basis of enzyme thermostabilityJ Bacteriol18540384049PubMedCrossRefGoogle Scholar
  83. Yokota, K, Satou, K, Ohki, SY 2006Comparative analysis of protein thermostability: differences in amino acid content and substitution at the surfaces and in the core regions of thermophilic and mesophilic proteinsSci Tech Adv Mat7255262CrossRefGoogle Scholar
  84. Zhang, G, Fang, B 2006aApplication of amino acid distribution along the sequence for discriminating mesophilic and thermophilic proteinsProc Biochem4117921798CrossRefGoogle Scholar
  85. Zhang, G, Fang, B 2006bDiscrimination of thermophilic and mesophilic proteins via pattern recognition methodsProc Biochem41552556CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Chemical Biology and Pharmaceutical ChemistryZhejiang UniversityHangzhouChina
  2. 2.Food Quality and Safety DepartmentZhejiang Gongshang UniversityHangzhouChina
  3. 3.Microbiology Division, College of Animal ScienceZhejiang UniversityHangzhouChina

Personalised recommendations