Amino Acids

, Volume 33, Issue 2, pp 359–366 | Cite as

Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis

  • O. Heby
  • L. Persson
  • M. Rentala
Review Article


Trypanosomatids depend on spermidine for growth and survival. Consequently, enzymes involved in spermidine synthesis and utilization, i.e. arginase, ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetDC), spermidine synthase, trypanothione synthetase (TryS), and trypanothione reductase (TryR), are promising targets for drug development. The ODC inhibitor α-difluoromethylornithine (DFMO) is about to become a first-line drug against human late-stage gambiense sleeping sickness. Another ODC inhibitor, 3-aminooxy-1-aminopropane (APA), is considerably more effective than DFMO against Leishmania promastigotes and amastigotes multiplying in macrophages. AdoMetDC inhibitors can cure animals infected with isolates from patients with rhodesiense sleeping sickness and leishmaniasis, but have not been tested on humans. The antiparasitic effects of inhibitors of polyamine and trypanothione formation, reviewed here, emphasize the relevance of these enzymes as drug targets. By taking advantage of the differences in enzyme structure between parasite and host, it should be possible to design new drugs that can selectively kill the parasites.

Keywords: African sleeping sickness – Chagas’ disease – Leishmaniasis – Polyamines 



5′-{[(Z)-4-amino-2-butenyl]methylamino}-5′-deoxyadenosine (MDL 73811)






S-adenosylmethionine decarboxylase



CGP 40215A

(bis{[3-(aminoiminomethyl)phenyl]methylene}carbonimidic dihydrazide trihydrochloride)


central nervous system


decarboxylated S-adenosylmethionine




Leishmania major polyamine transporter 1






ornithine decarboxylase


spermidine synthase


Spermine synthase


trypanothione reductase


trypanothione synthetase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariyanayagam, MR, Oza, SL, Mehlert, A, Fairlamb, AH 2003Bis(glutathionyl)spermine and other novel trypanothione analogues in Trypanosoma cruzi J Biol Chem2782761227619PubMedCrossRefGoogle Scholar
  2. Bacchi, CJ, Nathan, HC, Hutner, SH, McCann, PP, Sjoerdsma, A 1980Polyamine metabolism: a potential therapeutic target in trypanosomesScience210332334PubMedCrossRefGoogle Scholar
  3. Bacchi, CJ, Nathan, HC, Yarlett, N, Goldberg, B, McCann, PP, Bitonti, AJ, Sjoerdsma, A 1992Cure of murine Trypanosoma brucei rhodesiense infections with an S-adenosylmethionine decarboxylase inhibitorAntimicrob Agents Chemother3627362740PubMedGoogle Scholar
  4. Bacchi, CJ, Garofalo, J, Ciminelli, M, Rattendi, D, Goldberg, B, McCann, PP, Yarlett, N 1993Resistance to DL-α-difluoromethylornithine by clinical isolates of Trypanosoma brucei rhodesiense. Role of S-adenosylmethionineBiochem Pharmacol46471481PubMedCrossRefGoogle Scholar
  5. Bacchi, CJ, Brun, R, Croft, SL, Alicea, K, Bühler, Y 1996In vivo trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitorsAntimicrob Agents Chemother4014481453PubMedGoogle Scholar
  6. Berriman, M,  et al. 2005The genome of the African trypanosome Trypanosoma brucei Science309416435PubMedCrossRefGoogle Scholar
  7. Bitonti, AJ, Kelly, SE, McCann, PP 1984Characterization of spermidine synthase from Trypanosoma brucei brucei Mol Biochem Parasitol132128PubMedCrossRefGoogle Scholar
  8. Bitonti, AJ, Cross-Doersen, DE, McCann, PP 1988Effects of α-difluoromethylornithine on protein synthesis and synthesis of the variant-specific glycoprotein (VSG) in Trypanosoma brucei brucei Biochem J250295298PubMedGoogle Scholar
  9. Bitonti, AJ, Byers, TL, Bush, TL, Casara, PJ, Bacchi, CJ, Clarkson, AB,Jr, McCann, PP, Sjoerdsma, A 1990Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylaseAntimicrob Agents Chemother3414851490PubMedGoogle Scholar
  10. Brun, R, Bühler, Y, Sandmeier, U, Kaminsky, R, Bacchi, CJ, Rattendi, D, Lane, S, Croft, SL, Snowdon, D, Yardley, V, Caravatti, G, Frei, J, Stanek, J, Mett, H 1996In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitorsAntimicrob Agents Chemother4014421447PubMedGoogle Scholar
  11. Brun, R, Burri, C, Gichuki, CW 2001The story of CGP 40215: studies on its efficacy and pharmacokinetics in African green monkey infected with Trypanosoma brucei rhodesiense Trop Med Int Health6362368PubMedCrossRefGoogle Scholar
  12. Byers, TL, Bush, TL, McCann, PP, Bitonti, AJ 1991Antitrypanosomal effects of polyamine biosynthesis inhibitors correlate with increases in S-adenosyl-L-methionineBiochem J274527533PubMedGoogle Scholar
  13. Carrillo, C, Cejas, S, González, NS, Algranati, ID 1999 Trypanosoma cruzi epimastigotes lack ornithine decarboxylase but can express a foreign gene encoding this enzymeFEBS Lett454192196PubMedCrossRefGoogle Scholar
  14. Carrillo, C, Cejas, S, Cortes, M, Ceriani, C, Huber, A, González, NS, Algranati, ID 2000Sensitivity of trypanosomatid protozoa to DFMO and metabolic turnover of ornithine decarboxylaseBiochem Biophys Res Commun279663668PubMedCrossRefGoogle Scholar
  15. Carrillo, C, Canepa, GE, Algranati, ID, Pereira, CA 2006Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi Biochem Biophys Res Commun344936940PubMedCrossRefGoogle Scholar
  16. Coward, JK, Pegg, AE 1987Specific multisubstrate adduct inhibitors of aminopropyltransferases and their effect on polyamine biosynthesis in cultured cellsAdv Enzyme Regul26107113PubMedCrossRefGoogle Scholar
  17. Fairlamb, AH 2003Chemotherapy of human African trypanosomiasis: current and future prospectsTrends Parasitol19488494PubMedCrossRefGoogle Scholar
  18. Fontecave, M, Atta, M, Mulliez, E 2004S-adenosylmethionine: nothing goes to wasteTrends Biochem Sci29243249PubMedCrossRefGoogle Scholar
  19. Giffin, BF, McCann, PP, Bitonti, AJ, Bacchi, CJ 1986Polyamine depletion following exposure to DL-α-difluoromethylornithine both in vivo and in vitro initiates morphological alterations and mitochondrial activation in a monomorphic strain of Trypanosoma brucei brucei J Protozool33238243PubMedGoogle Scholar
  20. González, NS, Ceriani, C, Algranati, ID 1992Differential regulation of putrescine uptake in Trypanosoma cruzi and other trypanosomatidsBiochem Biophys Res Commun188120128PubMedCrossRefGoogle Scholar
  21. Hanson, S, Adelman, J, Ullman, B 1992Amplification and molecular cloning of the ornithine decarboxylase gene of Leishmania donovani J Biol Chem26723502359PubMedGoogle Scholar
  22. Hasne, M-P, Ullman, B 2005Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major J Biol Chem2801518815194PubMedCrossRefGoogle Scholar
  23. Heby, O, Roberts, SC, Ullman, B 2003Polyamine biosynthetic enzymes as drug targets in parasitic protozoaBiochem Soc Trans31415419PubMedCrossRefGoogle Scholar
  24. Hunter, KJ, Le Quesne, SA, Fairlamb, AH 1994Identification and biosynthesis of N1, N9-bis(glutathionyl)aminopropylcadaverine (homotrypanothione) in Trypanosoma cruzi Eur J Biochem22610191027PubMedCrossRefGoogle Scholar
  25. Ikeguchi, Y, Bewley, MC, Pegg, AE 2006Aminopropyltransferases: function, structure and geneticsJ Biochem13919PubMedCrossRefGoogle Scholar
  26. Iniesta, V, Gómez-Nieto, LC, Corraliza, I 2001The inhibition of arginase by N1-hydroxy-L-arginine controls the growth of Leishmania inside macrophagesJ Exp Med193777783PubMedCrossRefGoogle Scholar
  27. Jiang, Y, Roberts, SC, Jardim, A, Carter, NS, Shih, S, Ariyanayagam, M, Fairlamb, AH, Ullman, B 1999Ornithine decarboxylase gene deletion mutants of Leishmania donovani J Biol Chem27437813788PubMedCrossRefGoogle Scholar
  28. Kaur, K, Emmett, K, McCann, PP, Sjoerdsma, A, Ullman, B 1986Effects of DL-α-difluoromethylornithine on Leishmania donovani promastigotesJ Protozool33518521PubMedGoogle Scholar
  29. Khomutov, AR 2002Inhibition of enzymes of polyamine biosynthesis by substrate-like O-substituted hydroxylaminesBiochemistry (Moscow)6711591167CrossRefGoogle Scholar
  30. Kierszenbaum, F, Wirth, JJ, McCann, PP, Sjoerdsma, A 1987Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cellsProc Natl Acad Sci USA8442784282PubMedCrossRefGoogle Scholar
  31. Kinch, LN, Scott, JR, Ullman, B, Phillips, MA 1999Cloning and kinetic characterization of the Trypanosoma cruzi S-adenosylmethionine decarboxylaseMol Biochem Parasitol101111PubMedCrossRefGoogle Scholar
  32. Le Quesne, SA, Fairlamb, AH 1996Regulation of a high-affinity diamine transport system in Trypanosoma cruzi epimastigotesBiochem J316481486PubMedGoogle Scholar
  33. Li, F, Hua, SB, Wang, CC, Gottesdiener, KM 1996Procyclic Trypanosoma brucei cell lines deficient in ornithine decarboxylase activityMol Biochem Parasitol78227236PubMedCrossRefGoogle Scholar
  34. Mukhopadhyay, R, Kapoor, P, Madhubala, R 1996Antileishmanial effect of a potent S-adenosylmethionine decarboxylase inhibitor: CGP 40215APharmacol Res336770PubMedCrossRefGoogle Scholar
  35. Müller, S, Coombs, GH, Walter, RD 2001Targeting polyamines of parasitic protozoa in chemotherapyTrends Parasitol17242249PubMedCrossRefGoogle Scholar
  36. Na-Bangchang, K, Doua, F, Konsil, J, Hanpitakpong, W, Kamanikom, B, Kuzoe, F 2004The pharmacokinetics of eflornithine (α-difluoromethylornithine) in patients with late-stage T. b. gambiense sleeping sicknessEur J Clin Pharmacol60269278PubMedCrossRefGoogle Scholar
  37. Oza, SL, Tetaud, E, Ariyanayagam, MR, Warnon, SS, Fairlamb, AH 2002A single enzyme catalyses formation of trypanothione from glutathione and spermidine in Trypanosoma cruzi J Biol Chem2773585335861PubMedCrossRefGoogle Scholar
  38. Persson, K, Åslund, L, Grahn, B, Hanke, J, Heby, O 1998 Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzymeBiochem J333527537PubMedGoogle Scholar
  39. Phillips, MA, Coffino, P, Wang, CC 1987Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibitionJ Biol Chem26287218727PubMedGoogle Scholar
  40. Reguera, RM, Fouce, RB, Cubria, JC, Bujidos, ML, Ordonez, D 1995Fluorinated analogues of L-ornithine are powerful inhibitors of ornithine decarboxylase and cell growth of Leishmania infantum promastigotesLife Sci56223230PubMedCrossRefGoogle Scholar
  41. Roberts, SC, Jiang, Y, Jardim, A, Carter, NS, Heby, O, Ullman, B 2001Genetic analysis of spermidine synthase from Leishmania donovani Mol Biochem Parasitol115217226PubMedCrossRefGoogle Scholar
  42. Roberts, SC, Scott, J, Gasteier, JE, Jiang, Y, Brooks, B, Jardim, A, Carter, NS, Heby, O, Ullman, B 2002S-adenosylmethionine decarboxylase from Leishmania donovani. Molecular, genetic, and biochemical characterization of null mutants and overproducersJ Biol Chem27759025909PubMedCrossRefGoogle Scholar
  43. Roberts, SC, Tancer, MJ, Polinsky, MR, Gibson, KM, Heby, O, Ullman, B 2004Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutantsJ Biol Chem2792366823678PubMedCrossRefGoogle Scholar
  44. Roberts, SC, Jiang, Y, Gasteier, J, Frydman, B, Marton, LJ, Heby, O, Ullman, B 2007 Leishmania donovani polyamine biosynthetic enzyme overproducers as tools to investigate the mode of action of cytotoxic polyamine analogsAntimicrob Agents Chemother51438445PubMedCrossRefGoogle Scholar
  45. Seiler, N 2003Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitorsCurr Drug Targets4537564PubMedCrossRefGoogle Scholar
  46. Singh, S, Mukherjee, A, Khomutov, AR, Persson, L, Heby, O, Chatterjee, M, Madhubala, R 2007Antileishmanial effect of 3-aminooxy-1-aminopropane is due to polyamine depletionAntimicrob Agents Chemother51528534PubMedCrossRefGoogle Scholar
  47. Van Nieuwenhove, S, Schechter, PJ, Declercq, J, Boné, G, Burke, J, Sjoerdsma, A 1985Treatment of gambiense sleeping sickness in the Sudan with oral DFMO (DL-a-difluoromethylornithine), an inhibitor of ornithine decarboxylase; first field trialTrans Roy Soc Trop Med Hyg79692698PubMedCrossRefGoogle Scholar
  48. Watanabe, S, Kusama-Eguchi, K, Kobayashi, H, Igarashi, K 1991Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liverJ Biol Chem2662080320809PubMedGoogle Scholar
  49. Yakubu, MA, Majumder, S, Kierszenbaum, F 1993Inhibition of S-adenosy-L-methionine (AdoMet) decarboxylase by the decarboxylated AdoMet analog 5′-{[(Z)-4-amino-2-butenyl]methylamino}-5′-deoxyadenosine (MDL 73811) decreases the capacities of Trypanosoma cruzi to infect and multiply within a mammalian host cellJ Parasitol79525532PubMedCrossRefGoogle Scholar
  50. Yarlett, N, Bacchi, CJ 1988Effect of DL-a-difluoromethylornithine on methionine cycle intermediates in Trypanosoma brucei brucei Mol Biochem Parasitol27110PubMedCrossRefGoogle Scholar
  51. Zou, Y, Wu, Z, Sirisoma, N, Woster, PM, Casero, RA,Jr, Weiss, LM, Rattendi, D, Lane, S, Bacchi, CJ 2001Novel alkylpolyamine analogues that possess both antitrypanosomal and antimicrosporidial activityBioorg Med Chem Lett1116131617PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • O. Heby
    • 1
  • L. Persson
    • 2
  • M. Rentala
    • 3
  1. 1.Department of Molecular BiologyUmeå UniversityUmeåSweden
  2. 2.Department of Experimental Medical Science, BMCLund UniversityLundSweden
  3. 3.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations