Amino Acids

, Volume 33, Issue 2, pp 341–350 | Cite as

Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification

  • E. C. Wolff
  • K. R. Kang
  • Y. S. Kim
  • M. H. Park
Review Article


A naturally occurring unusual amino acid, hypusine [N ɛ-(4-amino-2-hydroxybutyl)-lysine] is a component of a single cellular protein, eukaryotic translation initiation factor 5A (eIF5A). It is a modified lysine with structural contribution from the polyamine spermidine. Hypusine is formed in a novel posttranslational modification that involves two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). eIF5A and deoxyhypusine/hypusine modification are essential for growth of eukaryotic cells. The hypusine synthetic pathway has evolved in eukaryotes and eIF5A, DHS and DOHH are highly conserved, suggesting maintenance of a fundamental cellular function of eIF5A through evolution. The unique feature of the hypusine modification is the strict specificity of the enzymes toward its substrate protein, eIF5A. Moreover, DHS exhibits a narrow specificity toward spermidine. In view of the extraordinary specificity and the requirement for hypusine-containing eIF5A for mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes present new potential targets for intervention in aberrant cell proliferation.

Keywords: Hypusine – eIF5A – Posttranslational modification – Deoxyhypusine synthase – Deoxyhypusine hydroxylase – Polyamine 



archaeal initiation factor 5A


deoxyhypusine synthase


deoxyhypusine hydroxylase


elongation factor P


eukaryotic translation initiation factor 5A


primary isoform of eIF5A


secondary isoform of eIF5A


eIF5A intermediate containing deoxyhypusine


eIF5A active form containing hypusine


eIF5A precursor


N 1-guanyl-1,7-diaminoheptane


alpha-helical structural motif characteristic of Huntingtin, elongation factor 3E, a subunit of protein phosphatase 2A, and the target of rapamycin


nicotinamide adenine dinucleotide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbruzzese, A, Park, MH, Folk, JE 1986Deoxyhypusine hydroxylase from rat testis: partial purification and characterizationJ Biol Chem26130853089PubMedGoogle Scholar
  2. Bartig, D, Schümann, H, Klink, F 1990The unique posttranslational modification leading to deoxyhypusine or hypusine is a general feature of the archebacterial kingdomSystem Appl Microbiol13112116Google Scholar
  3. Brochier, C, Lopez-Garcia, P, Moreira, D 2004Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteriaGene330169176PubMedCrossRefGoogle Scholar
  4. Byers, TL, Ganem, B, Pegg, AE 1992Cytostasis induced in l1210 murine leukaemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5′-([(Z)-4-amino-2-butenyl]methylamino)-5′-deoxyadenosine may be due to hypusine depletionBiochem J287717724PubMedGoogle Scholar
  5. Byers, TL, Lakanen, JR, Coward, JK, Pegg, AE 1994The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by L-methylspermidine and 1,12-dimethylspermineBiochem J303363368PubMedGoogle Scholar
  6. Chatterjee, I, Gross, SR, Kinzy, TG, Chen, KY 2006Rapid depletion of mutant eukaryotic initiation factor 5A at restrictive temperature reveals connections to actin cytoskeleton and cell cycle progressionMol Genet Genomics275264276PubMedCrossRefGoogle Scholar
  7. Chattopadhyay, MK, Tabor, CW, Tabor, H 2003Spermidine, but not spermine, is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidaseProc Natl Acad Sci USA1001386913874PubMedCrossRefGoogle Scholar
  8. Chen, KY, Liu, AY 1997Biochemistry and function of hypusine formation on eukaryotic initiation factor 5ABiol Signals6105109PubMedGoogle Scholar
  9. Clement, PC, Henderson, CA, Jenkins, ZA, Smit-McBride, Z, Wolff, EC, Hershey, JWB, Park, MH, Johansson, HE 2003Identification and characterization of eukaryotic initiation factor 5A-2Eur J Biochem14742544263CrossRefGoogle Scholar
  10. Cooper, HL, Park, MH, Folk, JE, Safer, B, Braverman, R 1983Identification of the hypusine-containing protein Hy+ as translation initiation factor eIF-4DProc Natl Acad Sci USA8018541857PubMedCrossRefGoogle Scholar
  11. Costa-Neto, CM, Parreiras, ESLT, Ruller, R, Oliveira, EB, Miranda, A, Oliveira, L, Ward, RJ 2006Molecular modeling of the human eukaryotic translation initiation factor 5A (eIF5A) based on spectroscopic and computational analysesBiochem Biophys Res Commun347634640PubMedCrossRefGoogle Scholar
  12. Facchiano, AM, Stiuso, P, Chiusano, ML, Caraglia, M, Giuberti, G, Marra, M, Abbruzzese, A, Colonna, G 2001Homology modelling of the human eukaryotic initiation factor 5A (eIF5A)Protein Eng14881890PubMedCrossRefGoogle Scholar
  13. Gerner, EW, Mamont, PS, Bernhardt, A, Siat, M 1986Post-translational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cellsBiochem J239379386PubMedGoogle Scholar
  14. Guan, XY, Sham, JS, Tang, TC, Fang, Y, Huo, KK, Yang, JM 2001Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancerCancer Res6138063809PubMedGoogle Scholar
  15. Hanauske-Abel, HM, Slowinska, B, Zagulska, S, Wilson, RC, Staiano-Coico, L, Hanauske, AR, McCaffrey, T, Szabo, P 1995Detection of a sub-set of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary. Proposal of a role for eIF5A in onset of DNA replicationFEBS Lett3669298PubMedCrossRefGoogle Scholar
  16. Hanawa-Suetsugu, K, Sekine, S, Sakai, H, Hori-Takemoto, C, Terada, T, Unzai, S, Tame, JR, Kuramitsu, S, Shirouzu, M, Yokoyama, S 2004Crystal structure of elongation factor P from Thermus thermophilus HB8Proc Natl Acad Sci USA10195959600PubMedCrossRefGoogle Scholar
  17. Jakus, J, Wolff, EC, Park, MH, Folk, JE 1993Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono-guanylated diamines and polyaminesJ Biol Chem2681315113159PubMedGoogle Scholar
  18. Jao, DL, Chen, KY 2006Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complexJ Cell Biochem97583598PubMedCrossRefGoogle Scholar
  19. Jenkins, ZA, Haag, PG, Johansson, HE 2001Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expressionGenomics71101109PubMedCrossRefGoogle Scholar
  20. Joe, YA, Park, MH 1994Structural features of the eIF5A precursor required for posttranslational synthesis of deoxyhypusineJ Biol Chem2692591625921PubMedGoogle Scholar
  21. Joe, YA, Wolff, EC, Park, MH 1995Cloning and expression of human deoxyhypusine synthase cDNA. Structure-function studies with the recombinant enzyme and mutant proteinsJ Biol Chem2702238622392PubMedCrossRefGoogle Scholar
  22. Kang, HA, Hershey, JW 1994Effect of initiation factor 5A depletion on protein synthesis and of Saccharomyces cerevisiae J Biol Chem26939343940PubMedGoogle Scholar
  23. Kang, KR, Kim, YS, Wolff, EC, Park, MH 2007Specificity of the deoxyhypusine hydroxylase-eIF5A interaction: identification of amino acid residues of the enzyme required for binding of it substrate, deoxyhypusine-containing eIF5AJ Biol Chem28283008308PubMedCrossRefGoogle Scholar
  24. Kim, YS, Kang, KR, Wolff, EC, Bell, JK, McPhie, P, Park, MH 2006Deoxyhypusine hydroxylase is an Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysisJ Biol Chem2811321713225PubMedCrossRefGoogle Scholar
  25. Lee, CH, Um, PY, Park, MH 2001Structure-function studies of human deoxyhypusine synthase: identification of amino acid residues critical for the binding of spermidine and NADBiochem J355841849PubMedGoogle Scholar
  26. Murphey, RJ, Gerner, EW 1987Hypusine formation in protein by a two-step process in cell lysatesJ Biol Chem2621503315036PubMedGoogle Scholar
  27. Ober, D, Harms, R, Witte, L, Hartmann, T 2003Molecular evolution by change of function. Alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor proteinJ Biol Chem2781280512812PubMedCrossRefGoogle Scholar
  28. Park, J-H, Wolff, EC, Folk, JE, Park, MH 2003Reversal of the deoxyhypusine synthesis reaction. Generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthaseJ Biol Chem2783268332691PubMedCrossRefGoogle Scholar
  29. Park, J-H, Aravind, L, Wolff, EC, Kaevel, J, Kim, YS, Park, MH 2006Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzymeProc Natl Acad Sci USA1035156PubMedCrossRefGoogle Scholar
  30. Park, MH, Cooper, HL, Folk, JE 1981Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursorProc Natl Acad Sci USA7828692873PubMedCrossRefGoogle Scholar
  31. Park, MH, Cooper, HL, Folk, JE 1982The biosynthesis of protein-bound hypusine (N-epsilon-(4-amino-2-hydroxybutyl)lysine). Lysine as the amino acid precursor and the intermediate role of deoxyhypusine (N-epsilon-(4-aminobutyl)lysine)J Biol Chem25772177222PubMedGoogle Scholar
  32. Park, MH, Joe, YA, Kang, KR, Lee, YB, Wolff, EC 1996The polyamine-derived amino acid hypusine: its post-translational formation in eIF5A and its role in cell proliferationAmino Acids10109121CrossRefGoogle Scholar
  33. Park, MH 2006The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A)J Biochem (Tokyo)139161169Google Scholar
  34. Sasaki, K, Abid, MR, Miyazaki, M 1996Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae FEBS Lett384151154PubMedCrossRefGoogle Scholar
  35. Schnier, J, Schwelberger, HG, Smit-McBride, Z, Kang, HA, Hershey, JW 1991Translation initiation factor 5A and its hypusine modification are essential for viability in the yeast Saccharomyces cerevisiae Mol Cell Biol1131053114PubMedGoogle Scholar
  36. Schrader, R, Young, C, Kozian, D, Hoffmann, R, Lottspeich, F 2006Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathwayJ Biol Chem2813533635346PubMedCrossRefGoogle Scholar
  37. Shiba, T, Mizote, H, Kaneko, T, Nakajima, T, Kakimoto, Y 1971Hypusine, a new amino acid occurring in bovine brain. Isolation and structural determinationBiochim Biophys Acta244523531PubMedGoogle Scholar
  38. Spradling, AC, Stern, D, Beaton, A, Rhem, EJ, Laverty, T, Mozden, N, Misra, S, Rubin, GM 1999The Berkeley Drosophila Genome Project Gene Disruption Project: single P-element insertions mutating 25% of vital Drosophila genesGenetics153135177PubMedGoogle Scholar
  39. Sugimoto, A 2004High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomicsDifferentiation728191PubMedCrossRefGoogle Scholar
  40. Tao, Y, Chen, KY 1995Molecular cloning and functional expression of Neurospora deoxyhypusine synthase cDNA and identification of yeast deoxyhypusine synthase cDNAJ Biol Chem2702398423987PubMedCrossRefGoogle Scholar
  41. Thompson, GM, Cano, VS, Valentini, SR 2003Mapping eIF5A binding sites for Dys1 and Lia1: in vivo evidence for regulation of eIF5A hypusinationFEBS Lett555464468PubMedCrossRefGoogle Scholar
  42. Umland, TC, Wolff, EC, Park, MH, Davies, DR 2004A new crystal structure of deoxyhypusine synthase reveals the configuration of the active enzyme and of an enzyme NAD inhibitor ternary complexJ BiolChem2792869728705Google Scholar
  43. Valentini, SR, Casolari, JM, Oliveira, CC, Silver, PA, McBride, AE 2002Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signalingGenetics160393405PubMedGoogle Scholar
  44. Weir, BA, Yaffe, MP 2004Mmd1p, a novel, conserved protein essential for normal mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe Mol Biol Cell1516561665PubMedCrossRefGoogle Scholar
  45. Wöhl, T, Klier, H, Ammer, H 1993The Hyp2 gene of Saccharomyces cerevisiae is essential for aerobic growth: characterization of different isoforms of the hypusine-containing protein Hyp2p and analysis of gene disruption mutantsMol Gen Genet241305311PubMedCrossRefGoogle Scholar
  46. Wolff, EC, Folk, JE, Park, MH 1997Enzyme-substrate intermediate formation at lysine 329 of human deoxyhypusine synthaseJ Biol Chem2721586515871PubMedCrossRefGoogle Scholar
  47. Xu, A, Jao, DL, Chen, KY 2004Identification of mRNA that binds to eukaryotic initiation factor 5A by affinity co-purification and differential displayBiochem J384585590PubMedCrossRefGoogle Scholar
  48. Zanelli, CF, Valentini, SR 2005Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutantGenetics17115711581PubMedCrossRefGoogle Scholar
  49. Zanelli, CF, Maragno, AL, Gregio, AP, Komili, S, Pandolfi, JR, Mestriner, CA, Lustri, WR, Valentini, SR 2006eIF5A binds to translational machinery components and affects translation in yeastBiochem Biophys Res Commun34813581366PubMedCrossRefGoogle Scholar
  50. Zuk, D, Jacobson, A 1998A single amino acid substitution in yeast eIF5A results in mRNA stabilizationEMBO J1729142925PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • E. C. Wolff
    • 1
  • K. R. Kang
    • 1
    • 2
  • Y. S. Kim
    • 1
  • M. H. Park
    • 1
  1. 1.Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaU.S.A.
  2. 2.Department of Biochemistry, College of Medicine and Institute of Health ScienceGyeongsang National UniversityJinjuSouth Korea

Personalised recommendations