Amino Acids

, Volume 33, Issue 3, pp 451–457 | Cite as

Rapid analysis of taurine in energy drinks using amino acid analyzer and Fourier transform infrared (FTIR) spectroscopy as basis for toxicological evaluation

  • S. Triebel
  • C. Sproll
  • H. Reusch
  • R. Godelmann
  • D. W. Lachenmeier
Article

Summary.

So-called energy drinks with very high amounts of taurine (up to 4000 mg/l are usually granted by certificates of exemption) are increasingly offered on the market. To control the currently valid maximum limits of taurine in energy drinks, a simple and rapid analytical method is required to use it routinely in food monitoring. In this article, we describe a fast and efficient analytical method (FTIR-spectroscopy) that is able to reliably characterize and quantify taurine in energy drinks. The determination of taurine in energy drinks by FTIR was compared with amino acid analyzer (ion chromatography with ninhydrin-postcolumn derivatization). During analysis of 80 energy drinks, a median concentration of 3180 mg/l was found in alcohol-free products, 314 mg/l in energy drinks with spirits, 151 mg/l in beer-containing drinks and 305 mg/l in beverages with wine. Risk analysis of these products is difficult due to the lack of valid toxicological information about taurine and its interferences with other ingredients of energy drinks (for example caffeine and alcohol). So far, the high taurine concentrations of energy drinks in comparison to the rest of the diet are scientifically doubtful, as the advertised physiological effects and the value of supplemented taurine are unproven.

Keywords: Taurine – Amino acid analyzer – FTIR-Spectroscopy – Energy drinks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANZFA (2001) Inquiry report. Application A394. Formulated caffeinated beverages. Australia New Zealand Food Authority, Canberra, AustraliaGoogle Scholar
  2. Aranda M, Morlock G (2006) Simultaneous determination of riboflavin, pyridoxine, nicotinamide, caffeine and taurine in energy drinks by planar chromatography-multiple detection with confirmation by electrospray ionization mass spectrometry. J Chromatogr A (in press) (e-pub ahead of print)Google Scholar
  3. AromenV (2006) Aromenverordnung. BGBl I 1129–1137Google Scholar
  4. BfR (2003) Alkoholhaltige Mischgetränke mit Koffein und koffeinhaltigen Zutaten. Stellungnahme des BfR vom 19. August 2003. Bundesinstitut für Risikobewertung (BfR), Berlin, GermanyGoogle Scholar
  5. BgVV (2002) Gesundheitliche Bewertung von Energydrinks. Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin, Berlin, GermanyGoogle Scholar
  6. Brosnan, JT, Brosnan, ME 2006The sulfur-containing amino acids: an overviewJ Nutr1361636S1640SPubMedGoogle Scholar
  7. Chaimbault, P, Alberic, P, Elfakir, C, Lafosse, M 2004Development of an LC-MS-MS method for the quantification of taurine derivatives in marine invertebratesAnal Biochem332215225PubMedCrossRefGoogle Scholar
  8. Finnegan, D 2003The health effects of stimulant drinksNutr Bull28147155CrossRefGoogle Scholar
  9. Huxtable, RJ 1992Physiological actions of taurinePhysiol Rev72101163PubMedGoogle Scholar
  10. Ikeda, H 1977Effects of taurine on alcohol withdrawalLancet310509CrossRefGoogle Scholar
  11. Kendler, BS 1989Taurine: an overview of its role in preventive medicinePrev Med1879100PubMedCrossRefGoogle Scholar
  12. Lachenmeier, DW 2005Rapid screening for ethyl carbamate in stone-fruit spirits using FTIR spectroscopy and chemometricsAnal Bioanal Chem38214071412PubMedCrossRefGoogle Scholar
  13. Lachenmeier, DW 2007Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectraFood Chem101825832CrossRefGoogle Scholar
  14. Lachenmeier, DW, Richling, E, Lopez, MG, Frank, W, Schreier, P 2005Multivariate analysis of FTIR and ion chromatographic data for the quality control of tequilaJ Agric Food Chem5321512157PubMedCrossRefGoogle Scholar
  15. Munro, IC, Renwick, AG 2006The 5th workshop on the assessment of adequate intake of dietary amino acids: general discussionJ Nutr1361755S1757SPubMedGoogle Scholar
  16. Obermann M, Schorn CF, Mummel P, Kastrup O, Maschke M (2006) Taurine induced toxic encephalopathy? Clin Neurol Neurosurg (in press) (e-pub ahead of print)Google Scholar
  17. Oborne, DJ, Rogers, Y 1983Interactions of alcohol and caffeine on human reaction timeAviat Space Environ Med54528534PubMedGoogle Scholar
  18. Patz, CD, Blieke, A, Ristow, R, Dietrich, H 2004Application of FT-MIR spectrometry in wine analysisAnal Chim Acta5138189CrossRefGoogle Scholar
  19. RASFF (2005) Rapid Alert System for Food and Feed (Week 2005/32, Week 2005/43). European Commission, Brussels, BelgiumGoogle Scholar
  20. Santa-Maria, A, Diaz, MM, Lopez, A, de Miguel, MT, Fernandez, MJ, Ortiz, AI 2002In vitro toxicity of stimulant soft drinksEcotoxicol Environ Saf537072PubMedCrossRefGoogle Scholar
  21. van de Poll, MC, Dejong, CH, Soeters, PB 2006Adequate range for sulfur-containing amino acids and biomarkers for their excess: lessons from enteral and parenteral nutritionJ Nutr1361694S1700SPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. Triebel
    • 1
  • C. Sproll
    • 1
  • H. Reusch
    • 1
  • R. Godelmann
    • 1
  • D. W. Lachenmeier
    • 1
  1. 1.Chemisches und Veterinäruntersuchungsamt (CVUA) KarlsruheKarlsruheGermany

Personalised recommendations