Amino Acids

, Volume 31, Issue 4, pp 385–396

Long-term effect of moderate and profound hypothermia on morphology, neurological, cognitive and behavioural functions in a rat model of perinatal asphyxia

  • H. Hoeger
  • E. Engidawork
  • D. Stolzlechner
  • H. Bubna-Littitz
  • B. Lubec
Article

Summary.

Background. Perinatal asphyxia is a frequent cause of neurological handicap with no known therapy. However, hypothermic therapy has recently attracted attention owing to its neuroprotective property in brain of immature organisms.

Objectives. Hypothermia appears to be promising in reversing the immediate effect of perinatal asphyxia, but data on long-term neuroprotection is still lacking. We therefore intended to test the long-term effect of moderate and profound hypothermia on brain morphology and functions using a well established rat model of perinatal asphyxia.

Methods. Rat pups delivered by caesarean section were placed into a water bath, still in patent membranes, at 37 °C and variable hypothermic conditions to induce asphyxia and thereafter given to surrogate mothers. Examinations were performed at the age of three months, consisting of a battery of motor, behavioural, cognition and reflex tests including rota-rod, Morris water maze, multiple T-maze, elevated plus maze and open field studies. Morphological alterations were evaluated by Nissl staining of brain areas known to be hypoxia sensitive. Neurotransmission system markers, including tyrosine hydroxylase, vesicular monoamine transporter, vesicular acetylcholine transporter and excitatory amino acid carrier1 were analyzed by immunohistochemistry.

Results. Survival increased with hypothermia. The Nissl stain revealed neuronal loss in hippocampus and hypothalamus of normothermic asphyxiated group (20/37) compared to controls (0/37), but no neuroprotective patterns emerged from hypothermia. An overall inconsistent protection of the neural systems was noted by variable periods of hypothermia. Motor function was significantly impaired in 20/37 as compared to 0/37. In the Morris water maze and multiple T-maze, results were comparable between the groups. In the elevated plus maze, time spent in the closed arm was reduced and in the open field, vertical behaviour was altered in the 20/37 group with horizontal motor behaviour being unaffected. Hypothermia reversed all abnormalities seen in 20/37, with short-term moderate and profound hypothermia being superior to long-term hypothermia.

Conclusion. Hypothermia not only significantly increased survival, but also resulted in unimpaired motor as well as improved cognitive functions. Those findings are in contrast to altered brain morphology. As neuronal loss was present in various brain regions, we conclude that deficits may be compensated in the maturing animal. Intrahypoxic hypothermia was able to protect the rat from the devastating effect of perinatal asphyxia not in morphological, but in functional terms.

Keywords: Hypothermia – Perinatal asphyxia – Neurotransmitter markers 

Abbreviations:

EAAC

exitatory amino acid carrier

PBS

phosphate buffered saline

TH

tyrosine hydroxylase

VAChT

vesicular acetylcholine transporter

VMAT

vesicular monoamine transmitter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, I, Cecyre, D, Gauthier, S, Quirion, R 1996Comparative ontogenic profile of cholinergic markers, including nicotinic and muscarinic receptors in the brainJ Comp Neurol3693155PubMedCrossRefGoogle Scholar
  2. Baker, AJ, Zornow, MH, Grafe, MR, Schiller, MS, Skilling, SR, Smullin, DH, Larson, AA 1991Hypothermia prevents ischemia-induced increases in hippocampal glycine concentrations in rabbitsStroke22666673PubMedGoogle Scholar
  3. Bona, E, Hagberg, H, Loberg, EM, Bagenholm, R, Thoresen, M 1998Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: short- and long-term outcomePediatr Res43738745PubMedGoogle Scholar
  4. Bressers, WM, Kruk, MR, Van Erp, AM, Willekens-Bramer, DC, Haccou, P, Meelis, E 1995Time structure of self grooming in the rat: self-faciliation and effects of hypothalamic stimulation and neuropeptidesBehav Neurosci109955964PubMedCrossRefGoogle Scholar
  5. Burck, HC 1981Histologische TechnikThiemeStuttgart, New YorkGoogle Scholar
  6. Busto, R, Globus, MY-T, Dietrich, D, Martinez, E, Valdes, I, Ginsberg, MD 1989Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brainStroke20904910PubMedGoogle Scholar
  7. Buwalda, B, Nyakas, C, Vosselman, HJ, Luiten, PGM 1995Effects of early postnatal anoxia on adult learning and emotion in ratsBehav Brain Res678590PubMedCrossRefGoogle Scholar
  8. Capani, F, Loidl, F, Lopez-Costa, JJ, Selvin-Testa, A, Saavedra, JP 1997Ultrastructural changes in nitric oxide synthase immunoreactivity in the brain of rats subjected to perinatal asphyxia: neuroprotective effects of cold treatmentBrain Res7751123PubMedCrossRefGoogle Scholar
  9. Carter, BS, Havercamp, AD, Merenstein, GB 1993The definition of acute perinatal asphyxiaClin Perinatol20287303PubMedGoogle Scholar
  10. Chen, Y, Orgen, SO, Bielke, B, Bolme, P, Eneroth, P, Gross, J, Loidl, F, Herrera-Marschitz, M 1995Nicotine treatment counteracts perinatal asphyxia induced changes in the mesostriatal/limbic dopamine system and in motor behavior in the four week old male ratNeuroscience68531538PubMedCrossRefGoogle Scholar
  11. Dell’Anna, ME, Calzolari, S, Molinari, M, Iuvone, L, Calimici, R 1991Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing ratsBehav Brain Res45125134PubMedCrossRefGoogle Scholar
  12. Dunn, JM, Miller, JA 1969Hypothermia combined with positive pressure ventilation in the resuscitation of the asphyxiated neonateAm J Obstet Gynecol1045867PubMedGoogle Scholar
  13. Edwars, AD, Yue, X, Squier, MV, Thoresen, M, Cady, EB, Penrice, J, Cooper, CE, Wyatt, JS, Reynolds, EOR, Mehmet, H 1995Specific inhibition of apoptosis after cerebral hypoxia-ischemia by moderate post-insult hypothermiaBiochem Biophys Res Commun311931199CrossRefGoogle Scholar
  14. Engidawork, E, Loidl, F, Chen, Y, Kohlhauser, C, Stoeckler, S, Dell’Anna, E, Lubec, B, Lubec, G, Goiny, M, Gross, J, Andersson, K, Herrera-Marschitz, M 2001Comparison between hypothermia and glutamate antagonism treatments on the immediate outcome of perinatal aspyxiaExp Brain Res138375383PubMedCrossRefGoogle Scholar
  15. Espinoza, MI, Parer, JT 1991Mechanisms of asphyxial brain damage and possible pharmacologic interventions in the fetusAm J Obstet Gynecol16415821589PubMedGoogle Scholar
  16. Fritts, ME, Asbury, ET, Horton, JE, Isaac, WL 1998Medial prefrontal lesion deficits involving or sparing the prelimbic area in the ratPhysiol Behav64373380PubMedCrossRefGoogle Scholar
  17. Furuta, A, Rothstein, JD, Martin, LJ 1997Glutamate transporter protein subtypes are expressed differentially during rat CNS developmentJ Neurosci1783638375PubMedGoogle Scholar
  18. Ginsberg, MD, Sternau, LL, Globus, MY, Dietrich, WD, Busto, R 1992Therapeutic modulation of brain temperature: relevance to ischemic brain injuryCerebrovasc Brain Metab Rev4189225PubMedGoogle Scholar
  19. Gunn, AJ, Gluckman, PD, Gunn, TR 1998Selective head cooling in newborn infants after perinatal asphyxia: a saftey studyPediatrics102885892PubMedCrossRefGoogle Scholar
  20. Gunn, AJ, Bennet, L, Gunning, MI, Gluckman, PD, Gunn, TR 1999Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheepPediatr Res46274280PubMedGoogle Scholar
  21. Haaland, K, Loberg, EM, Steen, PA, Thoresen, M 1997Posthypoxic hypothermia in newborn pigletsPediatr Res41505512PubMedGoogle Scholar
  22. Hagberg, H, Andersson, P, Kjellmer, I, Thiringer, K, Thordstein, M 1987Extracellular overflow of glutamate, aspartate, GABA, and taurine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemiaNeurosci Lett78311317PubMedCrossRefGoogle Scholar
  23. Hamm, RJ, Pike, BR, O’Dell, DM, Lyeth, BG, Jenkins, LW 1994The rota-rod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injuryJ Neurotrauma11187196PubMedCrossRefGoogle Scholar
  24. Hershkowitz, M, Grimm, VE, Speiser, Z 1983The effects of postnatal anoxia on behaviour and on the muscarinic and beta-adrenergic receptors in the hippocampus of the developing ratDev Brain Res7379382CrossRefGoogle Scholar
  25. Hill, A 1991Current concepts of hypoxic-ischemic cerebral injury in the term newbornPediatr Neurol7317325PubMedCrossRefGoogle Scholar
  26. Hoeger, H, Engelmann, M, Bernert, G, Seidl, R, Bubna-Littitz, H, Mosgoeller, W, Lubec, B, Lubec, G 2000Long term neurological and behavioral effects of graded perinatal asphyxia in the ratLife Sci66944962CrossRefGoogle Scholar
  27. Hoeger, H, Bubna-Littitz, H, Engelmann, M, Schwerdtner, I, Schmid, D, Lahoda, R, Seidl, R, Lubec, G, Lubec, B 2003Perinatal asphyxia in the guinea-pig leads to morphologic but not neurologic, cognitive or behavioral changesJ Invest Med51233239Google Scholar
  28. Irwin, S 1968Comprehensive observational assessment: a systematic, quantitative procedure for assessing the behavioral and physiologic state of the mousePsychopharmacologia13222257PubMedCrossRefGoogle Scholar
  29. Jones, BJ, Roberts, DJ 1968The quantitative measurement of motor incoordination in naive mice using an accelerating rota-rodJ Pharm Pharmacol20302304PubMedGoogle Scholar
  30. Kassa, P 1986The cholinergic system in brain and spinal cordProgr Neurobiol26211272CrossRefGoogle Scholar
  31. Klawitter, V, Morales, P, Johansson, S, Bustamante, D, Goiny, M, Gross, J, Luthman, J, Herrera-Marschitz, M 2005Effects of perinatal asphyxia on cell survival, neuronal phenotype and neurite growth evaluated with organotypic triple culturesAmino Acids28149155PubMedCrossRefGoogle Scholar
  32. Kohlhauser, CH, Mosgoeller, W, Hoeger, H, Lubec, G, Lubec, B 1999aCholinergic, monoaminergic and glutamatergic changes following perinatal asphyxia in the ratCell Mol Life Sci5514911501CrossRefGoogle Scholar
  33. Kohlhauser, C, Kaehler, S, Mosgoeller, W, Singewald, N, Kouvelas, D, Prast, H, Hoeger, H, Lubec, B 1999bHistological changes and neurotransmitter levels three months following perinatal asphyxia in the ratLife Sci6421092124CrossRefGoogle Scholar
  34. Laptook, AR, Corbett, RJT, Sterett, R, Burns, DK, Tollefsbol, G, Garcia, D 1994Modest hypothermia provides partial neuroprotection for ischemic neonatal brainPediatr Res35436442PubMedGoogle Scholar
  35. Laptook, AR, Corbett, RJT, Sterett, R, Garcia, D, Tollsfbol, G 1995Quantitative relationship between brain temperature and energy utilisation rate measured in vivo using 31P and 1H magnetic resonance spectroscopyPediatr Res38919925PubMedGoogle Scholar
  36. Loidl, CF, De Vente, J, Markerink van Ittersum, M, van Dijk, EHJ, Vles, JSH, Steinbusch, HWM, Blanco, CE 1998Hypothermia during or after severe perinatal asphyxia prevents increase in cyclic GMP-related nitric oxide levels in the newborn rat striatumBrain Res791303307PubMedCrossRefGoogle Scholar
  37. Lubec, B, Dell’Anna, E, Fang-Kircher, S, Marx, M, Herrera-Marschitz, M, Lubec, G 1997aDecrease of brain protein kinase C, protein kinase A, and cyclin-dependent kinase correlating with pH precedes neuronal death in neonatal asphyxiaJ Invest Med45284294Google Scholar
  38. Lubec, B, Marx, M, Herrera-Marschitz, M, Labudova, O, Hoeger, H, Gille, L, Nohl, H, Mosgoeller, W, Lubec, G 1997bDecrease of protein kinase C and cyclin-dependent kinase precedes death in perinatal asphyxiaFASEB J11482492Google Scholar
  39. Miller, J 1971New approaches to preventing brain damage during asphyxiaAm J Obstet Gynecol11011251133PubMedGoogle Scholar
  40. Miller, JA, Miller, FS 1972Mechanisms of hypothermic protection against anoxiaAdv Exp Med Biol33571586PubMedGoogle Scholar
  41. Mitchel, JB, Laiacona, J 1998The medial frontal cortex and temporal memory: tests using spontaneous exploratory behaviour in the ratBehav Brain Res97107113CrossRefGoogle Scholar
  42. Moøy, SS 1995Impaired acquisition and operate responding after neonatal dopamine depletion in ratsPharmacol Biochem Behav52433441CrossRefGoogle Scholar
  43. Poggioli, R, Benelli, A, Arletti, R, Cavazzuti, E, Bertolini, A 1995Nitric oxide is involved in the ACTH-induced behavioral syndromePeptides1612631268PubMedCrossRefGoogle Scholar
  44. Rogers, CD, Campbell, CA, Stretton, JL, Mackay, KB 1997Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the ratStroke2820602066PubMedGoogle Scholar
  45. Schafer, MK, Weihe, E, Varoqui, H, Eiden, LE, Erickson, JD 1994Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous system of the ratJ Mol Neurosci5126PubMedCrossRefGoogle Scholar
  46. Simpson, RE, Walter, GA, Phillis, JW 1990The effects of hypothermia on amino acid neurotransmitter release from the cerebral cortexNeurosci Lett1248386CrossRefGoogle Scholar
  47. Sirimane, ES, Blumberg, RM, Bossano, D, Guning, M, Edwards, AD, Gluckman, PD, Williams, CE 1996The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischemic brain injury in the infant ratPediatr Res39591597Google Scholar
  48. Solbrig, MV, Koob, GF, Reid, S, Lipkin, WI 1996Prefrontal cortex dysfunction in Borna disease virus (BVD)-infected ratsBiol Psychiatry40629636PubMedCrossRefGoogle Scholar
  49. Speiser, Z, Amitzi-Sonder, J, Gitter, S, Cohen, S 1983Behavioral differences in the developing rat following postnatal anoxia or postnatally injected AF-64, a cholinergic neurotoxinBehav Brain Res7379382PubMedCrossRefGoogle Scholar
  50. Thiabut, F, Faucheux, BA, Marquez, J, Villares, J, Menard, JF, Agid, Y, Hirsch, EC 1995Regional distribution of monoamine vesicular uptake sites in the mesencephalon of control subjects and patients with Parkinson’s disease: a postmortem study using tritiated tetrabenazineBrain Res692233243CrossRefGoogle Scholar
  51. Thoresen, M, Bagenholm, R, Loberg, EM, Apricena, F, Kjellmer, I 1996Posthypoxic cooling of neonatal rats provides protection against brain injuryArch Dis Childhood74F3F9Google Scholar
  52. Tohyama, M, Takatsuji, K 1998

    The glutamatergic system

    Tohyama, MTakatsuji, K eds. Atlas of neuroactive substances and their receptors in the ratOxford University PressNew York134143
    Google Scholar
  53. Trescher, WH, Ishiwa, S, Johnston, MV 1997Brief post-hypoxic-ischemic hypothermia markedly delays neonatal brain injuryBrain Dev19326338PubMedCrossRefGoogle Scholar
  54. van Erp, AM, Kruk, MR, Veening, JG, Roeling, TA, Meelis, W 1995Neuronal substrate of electrically induced grooming in the PVH of the rat: involvment of oxytocinergic systems?Physiol Behav57881885PubMedCrossRefGoogle Scholar
  55. Volpe, JJ 1987

    Neurology of the newborn

    Volpe, JJ eds. Hypoxic-ischemic encephalopathy: biochemical and physiological aspectsWB SaundersPhiladelphia22
    Google Scholar
  56. Wagner, CL, Eicher, DJ, Katikaneni, LD, Barbosa, E, Holden, KR 1999The use of hypothermia: a role in treatment of neonatal asphyxia?Pediatr Neurol21429443PubMedCrossRefGoogle Scholar
  57. Yager, J, Towfighi, J, Vanucci, RC 1993Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature ratPediatr Res34525529PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • H. Hoeger
    • 1
  • E. Engidawork
    • 2
    • 3
  • D. Stolzlechner
    • 3
  • H. Bubna-Littitz
    • 4
  • B. Lubec
    • 3
  1. 1.Institute for Animal BreedingMedical University of ViennaViennaAustria
  2. 2.Department of Pharmacology, School of PharmacyAddis Ababa UniversityAddis AbabaEthiopia
  3. 3.Department of NeonatologyMedical University of ViennaViennaAustria
  4. 4.Institute for PhysiologyVeterinary UniversityViennaAustria

Personalised recommendations