Amino Acids

, Volume 32, Issue 2, pp 225–233 | Cite as

Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity

  • C. A. Hill
  • R. C. Harris
  • H. J. Kim
  • B. D. Harris
  • C. Sale
  • L. H. Boobis
  • C. K. Kim
  • J. A. Wise


Muscle carnosine synthesis is limited by the availability of β-alanine. Thirteen male subjects were supplemented with β-alanine (CarnoSyn™) for 4 wks, 8 of these for 10 wks. A biopsy of the vastus lateralis was obtained from 6 of the 8 at 0, 4 and 10 wks. Subjects undertook a cycle capacity test to determine total work done (TWD) at 110% (CCT110%) of their maximum power (Wmax). Twelve matched subjects received a placebo. Eleven of these completed the CCT110% at 0 and 4 wks, and 8, 10 wks. Muscle biopsies were obtained from 5 of the 8 and one additional subject. Muscle carnosine was significantly increased by +58.8% and +80.1% after 4 and 10 wks β-alanine supplementation. Carnosine, initially 1.71 times higher in type IIa fibres, increased equally in both type I and IIa fibres. No increase was seen in control subjects. Taurine was unchanged by 10 wks of supplementation. 4 wks β-alanine supplementation resulted in a significant increase in TWD (+13.0%); with a further +3.2% increase at 10 wks. TWD was unchanged at 4 and 10 wks in the control subjects. The increase in TWD with supplementation followed the increase in muscle carnosine.

Keywords: β-alanine – Muscle – Carnosine – Taurine – Exercise – Cycle performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H 2000Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscleBiochemistry (Mosc)65757765Google Scholar
  2. Asatoor, AM, Bardon, JK, Lant, AF, Milne, MD, Navab, F 1970Intestinal absorption of carnosine and its constituent amino acids in manGut11250254PubMedGoogle Scholar
  3. Bakardjiev, A, Bauer, K 1994Transport of β-alanine and biosynthesis of carnosine by skeletal muscle cells in primary cultureEur J Biochem225617623PubMedCrossRefGoogle Scholar
  4. Bate-Smith, EC 1938The buffering of muscle in rigor: protein, phosphate and carnosineJ Physiol (Lond)92336343Google Scholar
  5. Batrukova, MA, Rubtsov, AM 1997Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channelsBiochem Biophys Acta1324142150PubMedGoogle Scholar
  6. Bell, GJ, Wenger, HA 1988The effect of one-legged sprint training on intramuscular pH and non-bicarbonate buffering capacityEur J Appl Physiol58158164CrossRefGoogle Scholar
  7. Bergström, J 1962Muscle electrolytes in man. Determined by neutron activation analysis on needle biopsy specimens. A study on normal subjects, kidney patients and patients with chronic diarrhoeaScand J Clin Lab Invest141110Google Scholar
  8. Bishop, D, Edge, J, Goodman, C 2004Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in womenEur J Appl Physiol92540547PubMedCrossRefGoogle Scholar
  9. Boldyrev, AA, Koldobski, A, Kurella, E, Maltseva, V, Stvolinski, S 1993Natural histidine-containing dipeptide carnosine as a potent hydrophilic antioxidant with membrane stabilizing function. A biomedical aspectMol Chem Neuropathol19185192PubMedCrossRefGoogle Scholar
  10. Chin, ER, Allen, DG 1998The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibresJ Physiol (Lond)512831840CrossRefGoogle Scholar
  11. Crush, KG 1970Carnosine and related substances in animal tissuesComp Biochem Physiol34330PubMedCrossRefGoogle Scholar
  12. Dawson, R, Biasetti, M, Messina, S, Dominy, J 2002The cytoprotective role of taurine in exercise-induced muscle injuryAmino Acids22309324PubMedCrossRefGoogle Scholar
  13. Dunnett, M, Harris, RC 1995Carnosine & Taurine contents of different fibre types in the middle gluteal muscle of the Thoroughbred horseEquine Vet J18214217Google Scholar
  14. Dunnett, M, Harris, RC 1997High-performance liquid chromatographic determination of imidazole dipeptides, histidine, 1-methylhistidine and 3-methylhistidine in equine & camel muscle & individual muscle fibresJ Chromatogr B6884755Google Scholar
  15. Dunnett, M, Harris, RC, Soliman, MZ, Suwar, AAS 1997Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camelRes Vet Sci62213216PubMedCrossRefGoogle Scholar
  16. Dunnett, M, Harris, RC 1999Influence of oral β-alanine and L-histidine supplementation on the carnosine content of the gluteus mediusEquine Vet J30499504Google Scholar
  17. Edge, J, Bishop, , Hill-Haas, S, Dawson, B, Goodman, C 2006Comparison of muscle buffer capacity and repeated-sprint ability of untrained endurance-trained and team-sport athletesEur J Appl Physiol96225234CrossRefGoogle Scholar
  18. Fabiato, A, Fabiato, F 1978Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from the cardiac and skeletal musclesJ Physiol (Lond)276233255Google Scholar
  19. Favero, TG, Zable, AC, Bowman, M, Thompson, A, Abramson, JJ 1995Metabolic end products inhibit sarcoplasmic reticulum Ca2+ release and [H]ryanodine bindingJ Appl Physiol7816651667PubMedGoogle Scholar
  20. Harris, RC, Edwards, RHT, Hultman, E, Nordesjo, LO, Nylind, B 1976The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in manPflugers Arch367137142PubMedCrossRefGoogle Scholar
  21. Harris, RC, Dunnett, M, Greenhaff, PL 1998Carnosine & taurine contents in individual fibres in human vastus lateralis muscleJ Sports Sci16639643CrossRefGoogle Scholar
  22. Harris, RC, Söderlund, K, Hultman, E 1992Elevation of creatine in resting and exercised muscle in normal subjects by creatine supplementationClin Sci83367374PubMedGoogle Scholar
  23. Harris, RC, Katz, A, Sahlin, K, Snow, DH 1989Effect of freeze drying on measurements of pH in biopsy samples of the middle gluteal muscle of the horse: comparison of muscle pH to the pyruvate and lactate contentEquine Vet J214547PubMedCrossRefGoogle Scholar
  24. Harris, RC, Marlin, DJ, Dunnett, M, Snow, DH, Hultman, E 1990Muscle buffering capacity & dipeptide content in the thorough bred horse, greyhound dog & manComp Biochem Physiol97A249251CrossRefGoogle Scholar
  25. Harris, RC, Tallon, MJ, Dunnett, M, Boobis, L, Coakley, J, Kim, HJ, Fallowfield, JL, Hill, CA, Sale, C, Wise, JA 2006The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralisAmino Acids30279289PubMedCrossRefGoogle Scholar
  26. Hipkiss, AR 2000Carnosine and protein carbonyl groups: a possible relationshipBiochemistry (Mosc)65771778Google Scholar
  27. Hipkiss, AR, Michaelis, J, Syrris, P 1995Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agentFEBS Lett3718185PubMedCrossRefGoogle Scholar
  28. Hultman, E, Sahlin, K 1980Acid-base balance during exerciseExerc Sport Sci Rev841128PubMedGoogle Scholar
  29. Jessen, H 1994Taurine and beta-alanine transport in an established human kidney cell line derived from the proximal tubuleBiochim Biophys Acta11944452PubMedCrossRefGoogle Scholar
  30. Juel, C, Lundby, C, Sander, M, Calbet, JAL, van Hall, G 2003Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxiaJ Physiol548639648PubMedCrossRefGoogle Scholar
  31. Lamont, C, Miller, DJ 1992Calcium sensitizing action of carnosine and other endogenous imidazoles in chemically skinned striated muscleJ Physiol454421434PubMedGoogle Scholar
  32. Mannion, AF, Jakeman, PM, Dunnett, M, Harris, RC, Willan, PLT 1992Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humansEur J Appl Physiol644750CrossRefGoogle Scholar
  33. Meyerhoff, O 1920Die Engergieumwandlungen im Muskel. III. Kohlenhydrat-und Milchsäureumsatz im FroschmuskelPflugers Arch Ges Physiol1851132CrossRefGoogle Scholar
  34. Nevill, ME, Boobis, LS, Brooks, S, Williams, C 1989Effect of training on muscle metabolism during treadmill sprintingJ Appl Physiol6723762382PubMedGoogle Scholar
  35. Parkhouse, WS, McKenzie, DC, Hochachka, PW, Ovalle, WK 1985Buffering capacity of deproteinized human vastus lateralis muscleJ Appl Physiol581417PubMedGoogle Scholar
  36. Perry, TL, Hansen, S, Tischler, B, Bunting, R, Berry, K 1967Carnosinemia: a new metabolic disorder associated with neurologic disease and mental defectNew Engl J Med27712191226PubMedCrossRefGoogle Scholar
  37. Ramamoorthy, S, Leibach, FH, Mahesh, VB, Han, H, Yang-Feng, T, Blakely, RD, Ganapathy, V 1994Functional characterization and chromosomal localization of a cloned taurine transporter from human placentaBiochem J300893900PubMedGoogle Scholar
  38. Sewell, DA, Harris, RC, Marlin, DJ, Dunnett, M 1992Estimation of the carnosine content of different fibre types in the middle gluteal muscle of the thoroughbred horseJ Physiol455447453PubMedGoogle Scholar
  39. Spriet, LL, Lindinger, MI, McKelvie, RS, Heigenhauser, GJF, Jones, NL 1989Muscle glycogenolysis and H+ concentration during maximal intermittent cyclingJ Appl Physiol66813PubMedGoogle Scholar
  40. Susuki, Y, Ito, O, Takahashi, H, Takamatsu, K 2004The effect of sprint training on skeletal muscle carnosine in humansInt J Sport Health Sci2105110Google Scholar
  41. Suzuki, Y, Ito, O, Mukai, N, Takahashi, H, Takamatsu, K 2002High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprintingJpn J Physiol52199205PubMedCrossRefGoogle Scholar
  42. Tallon, MJ, Harris, RC, Boobis, L, Fallowfield, J, Wise, JA 2005The carnosine content of vastus lateralis is elevated in resistance trained bodybuildersJ Strength Condit Res19725729CrossRefGoogle Scholar
  43. Talmadge, RJ, Roy, RR 1993Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoformsJ Appl Physiol7523372340PubMedGoogle Scholar
  44. Trivedi, B, Danforth, WH 1966Effect of pH on the kinetics of frog muscle phosphofructokinaseJ Biol Chem24141104112PubMedGoogle Scholar
  45. Wade, CE, Miller, MM, Baer, LA, Moran, MM, Steele, MK, Stein, TP 2002Body mass, energy intake, and water consumption of rats and humans during space flightNutrition18829836PubMedCrossRefGoogle Scholar
  46. Westerblad, H, Bruton, JD, Lannergren, J 1997The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperatureJ Physiol500193204PubMedGoogle Scholar
  47. Weston, AR, Myburgh, KH, Lindsay, FH, Dennis, SC, Noakes, TD, Hawley, JA 1997Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclistsEur J Appl Physiol75713Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. A. Hill
    • 1
  • R. C. Harris
    • 1
  • H. J. Kim
    • 2
  • B. D. Harris
    • 1
  • C. Sale
    • 3
  • L. H. Boobis
    • 4
  • C. K. Kim
    • 2
  • J. A. Wise
    • 5
  1. 1.School of Sports, Exercise & Health Sciences, University of ChichesterChichesterU.K.
  2. 2.Human Exercise Physiology, Korea National Sport UniversitySeoulKorea
  3. 3.Centre for Human SciencesQinetiQU.K.
  4. 4.Sunderland Royal HospitalSunderlandU.K.
  5. 5.Natural Alternatives InternationalSan MarcosU.S.A.

Personalised recommendations