Advertisement

Amino Acids

, 32:255 | Cite as

Dietary γ-aminobutyric acid affects the brain protein synthesis rate in young rats

  • K. Tujioka
  • S. Okuyama
  • H. Yokogoshi
  • Y. Fukaya
  • K. Hayase
  • K. Horie
  • M. Kim
Article

Summary.

The purpose of this study was to determine whether the γ-aminobutyric acid (GABA) affects the rate of brain protein synthesis in male rats. Two experiments were done on five or three groups of young rats (5 wk) given the diets containing 20% casein administrated 0 mg, 25 mg, 50 mg, 100 mg or 200 mg/100 g body weight GABA dissolved in saline by oral gavage for 1 day (d) (Experiment 1), and given the diets contained 0%, 0.25% or 0.5% GABA added to the 20% casein diet (Experiment 2) for 10 d. The plasma concentration of growth hormone (GH) was the highest in rats administrated 50 mg and 100 mg/100 g body weight GABA. The concentration of serum GABA increased significantly with the supplementation groups. The fractional (Ks) rates of protein synthesis in brain regions, liver and gastrocnemius muscle increased significantly with the 20% casein + 0.25% GABA diet and still more 20% casein + 0.5% GABA compared with the 20% casein diet. In brain regions, liver and gastrocnemius muscle, the RNA activity [g protein synthesized/(g RNA·d)] significantly correlated with the fractional rate of protein synthesis. The RNA concentration (mg RNA/g protein) was not related to the fractional rate of protein synthesis in any organ. Our results suggest that the treatment of GABA to young male rats are likely to increase the concentrations of plasma GH and the rate of protein synthesis in the brain, and that RNA activity is at least partly related to the fractional rate of brain protein synthesis.

Keywords: γ-Aminobutyric acid – Growth hormone – Protein synthesis – Brain – Rats 

Abbreviations:

GABA

γ-aminobutyric acid

GH

growth hormone

d

days

References

  1. American Institute of Nutrition1993AIN purified diets for laboratory rodents: final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN 76A rodent dietJ Nutr12319391951Google Scholar
  2. Anthony, JC, Gautsch Anthony, T, Kimball, SR, Vary, TC, Jefferson, LS 2000aOrally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF 4F formationJ Nutr130139145Google Scholar
  3. Anthony, JC, Yoshizawa, F, Gautsch Anthony, T, Vary, TC, Jefferson, LS, Kimball, SR 2000bLeucine stimulates translation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathwayJ Nutr13024132419Google Scholar
  4. Attaix, D, Aurosseau, E, Bayle, G, Rosolowska-Huszcz, D, Arnal, M 1988Respective influences of age and weaning on skeletal and visceral muscle protein synthesis in the lambBiochem J256791795PubMedGoogle Scholar
  5. Beverly, JL,III, Gietzen, DW, Rogers, QR 1991Protein synthesis in the prepyriform cortex: effects on intake of an amino acid-imbalanced diet by Sprague-Dawley ratsJ Nutr121754761PubMedGoogle Scholar
  6. Bianchi, L, Della Corte, L, Tipton, KF 1999Simultaneous determination of basal and evoked output levels of aspartate, glutamate, taurine and 4-aminobutyric acid during microdialysis and from superfused brain slicesJ Chromatogr7234759Google Scholar
  7. Deijen, JB, de Boer, H, van der Veen, EA 1998Cognitive changes during growth hormone replacement in adult menPsychoneuroendocrinology234555PubMedCrossRefGoogle Scholar
  8. Duncan, DB 1955Multiple range and multiple F testsBiometrics11142CrossRefGoogle Scholar
  9. Flaim, KE, Liao, WSL, Peavy, DE, Taylor, JM, Jefferson, LS 1982The role of amino acids in the regulation of protein synthesis in perfused liver. II. Effects of amino acid deficiency of peptide chain initiation, polysomal aggregation, and distribution of albumin mRNAJ Biol Chem25729392946PubMedGoogle Scholar
  10. Fleck, A, Munro, HN 1962The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimationBiochim Biophys Acta55571583PubMedCrossRefGoogle Scholar
  11. Garlick, PJ, McNurlan, MA, Preedy, VR 1980A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanineBiochem J192719723PubMedGoogle Scholar
  12. Gibney, J, Wallace, JD, Spinks, T, Schnorr, L, Ranicar, A, Cuneo, RC, Lockhart, S, Burnand, KG, Salomon, F, Sonksen, PH, Russel-Jones, D 1999The effects of 10 years of recombinant human growth hormone (GH) in adult GH-deficient patientsJ Clin Endocrinol Metab8425962602PubMedCrossRefGoogle Scholar
  13. Goldspink, DF, Kelly, FJ 1984Protein turnover and growth in the whole body, liver and kidney of the rat from the foetus to senilityBiochem J217507516PubMedGoogle Scholar
  14. Goldspink, DF, Lewis, SEM, Kelly, FJ 1984Protein synthesis during the developmental growth of the small and large intestine of the ratBiochem J217527534PubMedGoogle Scholar
  15. Hayase, K, Koie, M, Yokogoshi, H 1998The quantity of dietary protein affects brain protein synthesis rate in aged ratsJ Nutr12815331536PubMedGoogle Scholar
  16. Hayase, K, Naganuma, Y, Moriyama, M, Yoshida, A, Yokogoshi, H 1997Effect of a thyroid hormone treatment on brain protein synthesis in ratsBiosci Biotech Biochem6115361540CrossRefGoogle Scholar
  17. Hayase, K, Tanaka, M, Tujioka, K, Hirano, E, Habuchi, O, Yokogoshi, H 200117-β-Estradiol affects brain protein synthesis rate in ovariectomized female ratsJ Nutr131123126PubMedGoogle Scholar
  18. Hayase, K, Yokogoshi, H 1994Age affects brain protein synthesis in ratsJ Nutr124683688PubMedGoogle Scholar
  19. Hayase, K, Yokogoshi, H 1995Insulin treatment affects brain protein synthesis rate in streptozotocin-induced diabetic ratsJ Nutr12527682772PubMedGoogle Scholar
  20. Kato, H 2002Molecular biology of protein metabolismKakinuma, J eds. Molecular nutritionKoseikanTokyo5064Google Scholar
  21. Koie, M, Tanaka, M, Hayase, K, Yoshida, A, Yokogoshi, H 1999Effect of dietary protein quality on the brain protein synthesis rate in aged ratsJ Nutr Sci Vitaminol45481489PubMedGoogle Scholar
  22. Kravitz, EA, Molinoff, PB, Hall, ZW 1965A comparison of the enzymes and substrates of gamma-aminobutyric acid metabolism in lobster excitatory and inhibitory axonsProc Natl Acad Sci USA54778782PubMedCrossRefGoogle Scholar
  23. Le Greves, M, Steensland, P, Le Greves, P, Nyberg, F 2002Growth hormone induces age-dependent alteration in the expression of hippocampal growth hormone receptor and N-methyl-D-aspartate receptor subunits gene transcripts in male ratsProc Natl Acad Sci USA9971197123PubMedCrossRefGoogle Scholar
  24. Lewis, SEM, Kelly, FJ, Goldspink, DF 1984Pre- and post-natal growth and protein turnover in smooth muscle heart and slow- and fast-swich skeletal muscles of the ratBiochem J217517526PubMedGoogle Scholar
  25. Lowry, OH, Rosebrough, NJ, Farr, AL, Randall, RJ 1951Protein measurement with the Folin phenol reagentJ Biol Chem193265275PubMedGoogle Scholar
  26. Lyou, S, Tujioka, K, Hirano, E, Mawatari, Y, Hayase, K, Okuyama, S, Yokogoshi, H 2004Effect of adding dietary methionine to a low soy protein diet on the brain protein synthesis rate in ovariectomized female ratsNutr Neurosci7185190PubMedCrossRefGoogle Scholar
  27. Lyou, S, Yokogoshi, H 2004Hormones and brain functionYokogoshi, H eds. Brain function and nutritionSaiwaishoboTokyo359372Google Scholar
  28. Millward, DJ, Garlick, PJ, Nnanyelugo, DO, Waterlow, JC 1976The relative importance of muscle protein synthesis and breakdown in the regulation of muscle massBiochem J156185188PubMedGoogle Scholar
  29. Mitsushima, D, Shwe, T-T-W, Funabashi, T, Shinohara, K, Kimura, F 2002GABA release in the medial preoptic area of cyclic female ratsNeuroscience113109114PubMedCrossRefGoogle Scholar
  30. Otsuka, M, Kravitz, EA, Potter, DD 1966Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamateJ Neurophysiol30725752Google Scholar
  31. Reinstein, DK, Isaacson, RI, Dunn, AJ 1979Regional change in 2-deoxyglucose uptake after neocortical and hippocampal destructionBrain Res175392397PubMedCrossRefGoogle Scholar
  32. Roberts, E, Frankel, S 1950γ- Aminobutyric acid in brain: its formation glutamic acidJ Biol Chem1875563PubMedGoogle Scholar
  33. Snedecor, GW, Cochran, WG 1967Statistical methods6Iowa State University PressAmes, IAGoogle Scholar
  34. Symmons, RA, Maquire, EJ, Rogers, QR 1972Effect of dietary protein and feeding schedule on hepatic polysome pattern in the ratJ Nutr102639646PubMedGoogle Scholar
  35. Waterlow, JC, Garlick, PJ, Millward, DJ 1978Protein turnover in mammalian tissues and in the whole bodyNorth-HollandAmsterdam529594Google Scholar
  36. Yokogoshi, H, Hayase, K, Yoshida, A 1992The quality and quantity of dietary protein affect brain protein synthesis in ratsJ Nutr12222102217PubMedGoogle Scholar
  37. Yokogoshi, H, Sakuma, Y, Yoshida, A 1980Effect of dietary protein quality and quantity on hepatic polyribosome profiles in ratsJ Nutr11013471353PubMedGoogle Scholar
  38. Yoshizawa, F, Kimball, SR, Vary, TC, Jefferson, LS 1998Effect of dietary protein on translation initiation in rat skeletal muscle and liverAm J Physiol275E814E820PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • K. Tujioka
    • 1
  • S. Okuyama
    • 1
  • H. Yokogoshi
    • 1
  • Y. Fukaya
    • 2
  • K. Hayase
    • 2
  • K. Horie
    • 3
  • M. Kim
    • 3
  1. 1.Laboratory of Nutritional Biochemistry, School of Food and Nutritional Sciences, COE Program in the 21st Century, The University of ShizuokaYadaJapan
  2. 2.Department of Home EconomicsAichi University of EducationKariyaJapan
  3. 3.Research DepartmentPharma Foods International Company Ltd.KyotoJapan

Personalised recommendations