Advertisement

Amino Acids

, Volume 31, Issue 3, pp 273–278 | Cite as

The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse

  • E. J. Hamilton
  • H. M. Berg
  • C. J. Easton
  • A. J. Bakker
Article

Summary.

Taurine increases force production in skeletal muscle, and taurine levels may fall during exercise. The contractile properties and fatigability of extensor digitorum longus (EDL) muscles depleted of taurine by guanodinoethane sulfonate (GES) treatment were investigated. GES treatment decreased muscle taurine levels to <40% of controls. Peak twitch force levels were 23% of controls in GES treated EDL muscles (p < 0.05), but maximal specific force was unaffected. The force–frequency relationship was examined and significantly less force was produced by the GES treated muscles compared to controls at stimulation frequencies from 50 to 100 Hz (p < 0.05). GES treated EDL muscles exhibited significantly slower rates of fatigue than controls (p < 0.05). In skinned fibres, 20 mM GES had a small but significant effect on force production, indicating that GES may have some minor taurine-like effects. In this study, a fall in taurine levels decreased force output, and increased the endurance of EDL skeletal muscles.

Keywords: Muscle performance – Ca2+ – Extensor digitorum longus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakker, AJ, Berg, HM 2001The effect of taurine on sarcoplasmic reticulum function and contractile properties in skinned skeletal muscle fibers of the ratJ Physiol538185194CrossRefGoogle Scholar
  2. Chesney, RW, Lippincott, S, Gusowski, N, Padilla, M, Zelikovic, I 1986Studies on renal adaptation to altered dietary amino acid intake: tissue taurine responses in nursing and adult ratsJ Nutr11619651976PubMedGoogle Scholar
  3. Conte-Camerino, D, Franconi, F, Mambrini, M, Bennardini, F, Failli, P, Bryant, SH, Giotti, A 1987The action of taurine on chloride conductance and excitability characteristics of rat striated muscle fibersPharmacol Res Commun19685701PubMedCrossRefGoogle Scholar
  4. Cuisinier, C, Michotte De Welle, J, Verbeeck, RK, Poortmans, JR, Ward, R, Sturbois, X, Francaux, M 2002Role of taurine in osmoregulation during endurance exerciseEur J Appl Physiol87489495PubMedCrossRefGoogle Scholar
  5. De Luca, A, Pierno, S, Conte-Camerino, D 1996Effect of taurine depletion on excitation–contraction coupling and chloride conductance of rat skeletal muscleEur J Pharmacol296215222PubMedCrossRefGoogle Scholar
  6. Fink, RH, Stephenson, DG, Williams, DA 1986Potassium and ionic strength effects on the isometric force of skinned twitch muscle fibres of the rat and toadJ Physiol370317337PubMedGoogle Scholar
  7. Franconi, F, Martini, F, Stendardi, I, Matucci, R, Zilletti, L, Giotti, A 1982Effect of taurine on calcium levels and contractility in guinea-pig ventricular stripsBiochem Pharmacol3131813185PubMedCrossRefGoogle Scholar
  8. Fryer, MW, Owen, VJ, Lamb, GD, Stephenson, DG 1995Effects of creatine phosphate and P(i) on Ca2+ movements and tension development in rat skinned skeletal muscle fibersJ Physiol482123140PubMedGoogle Scholar
  9. Gruener, R, Markovitz, D, Huxtable, R, Bressler, R 1975Excitability modulation by taurine. Transmembrane measurements of neuromuscular transmissionJ Neurol Sci24351360PubMedCrossRefGoogle Scholar
  10. Han, R, Suizu, T, Grounds, MD, Bakker, AJ 2003Effect of indomethacin on force responses and sarcoplasmic reticulum function in skinned skeletal muscle fibers and cytosolic [Ca2+] in myotubesAmerican Journal of Physiology, Cell Physiol285C881C890Google Scholar
  11. Harada, H, Allo, S, Viyuoh, N, Azuma, J, Takahashi, K, Schaffer, SW 1988Regulation of calcium transport in drug-induced taurine-depleted heartsBiochim Biophys Acta944273278PubMedCrossRefGoogle Scholar
  12. Hennig, R, Lomo, T 1987Graduation of force output in normal fast and slow muscles of the ratActa Physiol Scand130133142PubMedCrossRefGoogle Scholar
  13. Huxtable, RJ 1982Guanidinoethane sulfonate and the disposition of dietary taurine in the ratJ Nutr11222932300PubMedGoogle Scholar
  14. Huxtable, RJ 1992Physiological actions of taurinePhysiol Rev72101163PubMedGoogle Scholar
  15. Huxtable, RJ, Bressler, R 1973Effect of taurine on a muscle intracellular membraneBiochim Biophy Acta323573583CrossRefGoogle Scholar
  16. Lamb, GD 2000Excitation–contraction coupling in skeletal muscle: comparisons with cardiac muscleClin Exp Pharmacol Physiol27216224PubMedCrossRefGoogle Scholar
  17. Lamb, GD, Stephenson, DG 1990Calcium release in skinned muscle fibers of the toad by transverse tubule depolarization or by direct stimulationJ Physiol423495517PubMedGoogle Scholar
  18. Nieminen, ML, Tuomisto, L, Solatunturi, E, Eriksson, L, Paasonen, MK 1988Taurine in the osmoregulation of the Brattleboro ratLife Sci4221372143PubMedCrossRefGoogle Scholar
  19. Ortenblad, N, Young, JF, Oksbjerg, N, Nielsen, JH, Lambert, IH 2003Reactive oxygen species are important mediators of taurine release from skeletal muscle cellsAmerican J Physiol Cell Physiol284C1362C1373Google Scholar
  20. Pierno, S, De Luca, A, Camerino, C, Huxtable, RJ, Camerino, DC 1998Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibersJ Pharmacol Exp Ther28611831190PubMedGoogle Scholar
  21. Ramamoorthy, S, Leibach, FH, Mahesh, VB, Han, H, Yang-Feng, T, Blakely, RD, Ganapathy, V 1994Functional characterization and chromosomal localization of a cloned taurine transporter from human placentaBiochem J300893900PubMedGoogle Scholar
  22. Segal, SS, Faulkner, JA, White, TP 1986Skeletal muscle fatigue in vitro is temperature dependentJ Appl Physiol61660665PubMedGoogle Scholar
  23. Segal, SS, Faulkner, JA 1985Temperature-dependent physiological stability of rat skeletal muscle in vitro Am J Physiol248C265C270PubMedGoogle Scholar
  24. Steele, DS, Smith, GL, Miller, DJ 1990The effects of taurine on calcium uptake by the sarcoplasmic reticulum and calcium sensitivity of the chemically skinned rat heartJ Physiol422499511PubMedGoogle Scholar
  25. Steele, DS, Duke, AM 2003Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigueActa Physiol Scand1793948PubMedCrossRefGoogle Scholar
  26. Stephenson, DG, Williams, DA 1981Calcium-activated force responses in fast- and slow-twitch skinned muscle fibers of the rat at different temperaturesJ Physiol317281302PubMedGoogle Scholar
  27. Turner, O, Phoenix, J, Wray, S 1994Developmental and gestational changes of phosphoethanolamine and taurine in rat brain, striated and smooth muscleExp Physiol79681689PubMedGoogle Scholar
  28. Warskulat, U, Flogel, U, Jacoby, C, Hartwig, HG, Thewissen, M, Merx, MW, Molojavyi, A, Heller-Stilb, B, Schrader, J, Haussinger, D 2004Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromisedFASEB J18577579PubMedGoogle Scholar
  29. Westerblad, H, Allen, DG 2002Recent advances in the understanding of skeletal muscle fatigueCurr Opin Rheumatol14648652PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • E. J. Hamilton
    • 1
  • H. M. Berg
    • 1
  • C. J. Easton
    • 2
  • A. J. Bakker
    • 1
  1. 1.Physiology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western AustraliaNedlandsAustralia
  2. 2.Research School of Chemistry, Australian National UniversityCanberraAustralia

Personalised recommendations