Amino Acids

, Volume 30, Issue 4, pp 369–389 | Cite as

Eye lens proteomics

  • W. Hoehenwarter
  • J. Klose
  • P. R. Jungblut
Review Article


The eye lens is a fascinating organ as it is in essence living transparent matter. Lenticular transparency is achieved through the peculiarities of lens morphology, a semi-apoptotic process where cells elongate and loose their organelles and the precise molecular arrangement of the bulk of soluble lenticular proteins, the crystallins. The 16 crystallins ubiquitous in mammals and their modifications have been extensively characterized by 2-DE, liquid chromatography, mass spectrometry and other protein analysis techniques. The various solubility dependant fractions as well as subproteomes of lenticular morphological sections have also been explored in detail. Extensive post translational modification of the crystallins is encountered throughout the lens as a result of ageing and disease resulting in a vast number of protein species. Proteomics methodology is therefore ideal to further comprehensive understanding of this organ and the factors involved in cataractogenesis.

Keywords: Eye lens – Proteomics – Crystallins – 2-DE – Liquid chromatography – Mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts, HJ, Lubsen, NH, Schoenmakers, JG 1989Crystallin gene expression during rat lens developmentEur J Biochem1833136PubMedCrossRefGoogle Scholar
  2. Abbasi, A, Smith, DL, Smith, JB 1998Characterization of low molecular mass gamma-crystallin fragments from human lensesExp Eye Res67485488PubMedCrossRefGoogle Scholar
  3. Abgar, S, Backmann, J, Aerts, T, Vanhoudt, J, Clauwaert, J 2000The structural differences between bovine lens alpha A- and alpha B-crystallinEur J Biochem26759165925PubMedGoogle Scholar
  4. Ajaz, MS, Ma, Z, Smith, DL, Smith, JB 1997Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of beta B1J Biol Chem2721125011255PubMedCrossRefGoogle Scholar
  5. Asselbergs, FA, Koopmans, M, van Venrooij, WJ, Bloemendal, H 1979Improved resolution of calf lens beta-crystallinsExp Eye Res28223228PubMedCrossRefGoogle Scholar
  6. Bassnett, S 2002Lens organelle degradationExp Eye Res74639649PubMedCrossRefGoogle Scholar
  7. Bateman, OA, Lubsen, NH, Slingsby, C 2001Association behavior of human betaB1-crystallin and its truncated formsExp Eye Res73321331PubMedCrossRefGoogle Scholar
  8. Bateman, OA, Sarra, R, van Genesen, ST, Kappe, G, Lubsen, NH, Slingsby, C 2003The stability of human acidic beta-crystallin oligomers and hetero-oligomersExp Eye Res77409422PubMedCrossRefGoogle Scholar
  9. Bennett, MJ, Choe, S, Eisenberg, D 1994Domain swapping: entangling alliances between proteinsProc Natl Acad Sci USA9131273131PubMedCrossRefGoogle Scholar
  10. Bennett, MJ, Schlunegger, MP, Eisenberg, D 19953D domain swapping: a mechanism for oligomer assemblyProtein Sci424552468PubMedGoogle Scholar
  11. Berbers, GA, Boerman, OC, Bloemendal, H, de Jong, WW 1982Primary gene products of bovine beta-crystallin and reassociation behavior of its aggregatesEur J Biochem128495502PubMedCrossRefGoogle Scholar
  12. Berbers, GA, Hoekman, WA, Bloemendal, H, de Jong, WW, Kleinschmidt, T, Braunitzer, G 1984Homology between the primary structures of the major bovine beta-crystallin chainsEur J Biochem139467479PubMedCrossRefGoogle Scholar
  13. Bhat, SP 2003Crystallins, genes and cataractProg Drug Res60205262PubMedGoogle Scholar
  14. Bhat, SP 2004Transparency and non-refractive functions of crystallins–a proposalExp Eye Res79809816PubMedCrossRefGoogle Scholar
  15. Bindels, JG, de Man, BM, Hoenders, HJ 1982High-performance gel permeation chromatography of bovine eye lens proteins in combination with low-angle laser light scattering. Superior resolution of the oligomeric beta-crystallinsJ Chromatogr252255267PubMedCrossRefGoogle Scholar
  16. Bindels, JG, Koppers, A, Hoenders, HJ 1981Structural aspects of bovine beta-crystallins: physical characterization including dissociation-association behaviorExp Eye Res33333343PubMedGoogle Scholar
  17. Bloemendal, H 1977The vertebrate eye lensScience197127138PubMedGoogle Scholar
  18. Bloemendal, H, de Jong, W, Jaenicke, R, Lubsen, NH, Slingsby, C, Tardieu, A 2004Ageing and vision: structure, stability and function of lens crystallinsProg Biophys Mol Biol86407485PubMedCrossRefGoogle Scholar
  19. Bloemendal, H, de Jong, WW 1991Lens proteins and their genesProg Nucleic Acid Res Mol Biol41259281PubMedCrossRefGoogle Scholar
  20. Bloemendal, H, Van de Gaer, K, Benedetti, EL, Dunia, I, Steely, HT 1997Toward a human crystallin map. Two-dimensional gel electrophoresis and computer analysis of water-soluble crystallins from normal and cataractous human lensesOphthalmic Res29177190PubMedCrossRefGoogle Scholar
  21. Bours, J, Wegener, A, Hofmann, D, Fodisch, HJ, Hockwin, O 1990Protein profiles of microsections of the fetal and adult human lens during development and ageingMech Ageing Dev541327PubMedCrossRefGoogle Scholar
  22. Bova, MP, Ding, LL, Horwitz, J, Fung, BK 1997Subunit exchange of alpha A-crystallinJ Biol Chem2722951129517PubMedCrossRefGoogle Scholar
  23. Bradley, RH, Ireland, M, Maisel, H 1979The cytoskeleton of chick lens cellsExp Eye Res28441453PubMedCrossRefGoogle Scholar
  24. Breitman, ML, Lok, S, Wistow, G, Piatigorsky, J, Treton, JA, Gold, RJ, Tsui, LC 1984Gamma-crystallin family of the mouse lens: structural and evolutionary relationshipsProc Natl Acad Sci USA8177627766PubMedCrossRefGoogle Scholar
  25. Calvin, HI, Wu, JX, Viswanadhan, K, Fu, SC 1996Modifications in lens protein biosynthesis signjal the initiation of cataracts induced by buthionine sulfoximine in miceExp Eye Res63357368PubMedCrossRefGoogle Scholar
  26. Carrell, RW, Lomas, DA 1997Conformational diseaseLancet350134138PubMedCrossRefGoogle Scholar
  27. Carter, JM, Hutcheson, AM, Quinlan, RA 1995In vitro studies on the assembly properties of the lens proteins CP49, CP115: coassembly with alpha-crystallin but not with vimentinExp Eye Res60181192PubMedCrossRefGoogle Scholar
  28. Carver, JA 1999Probing the structure and interactions of crystallin proteins by NMR spectroscopyProg Retin Eye Res18431462PubMedCrossRefGoogle Scholar
  29. Carver, JA, Cooper, PG, Truscott, RJ 19931H-NMR spectroscopy of beta B2-crystallin from bovine eye lensEur J Biochem213313320PubMedCrossRefGoogle Scholar
  30. Carver, JA, Nicholls, KA, Aquilina, JA, Truscott, RJ 1996Age-related changes in bovine alpha-crystallin and high-molecular-weight proteinExp Eye Res63639647PubMedCrossRefGoogle Scholar
  31. Caspers, GJ, Leunissen, JA, de Jong, WW 1995The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain”J Mol Evol40238248PubMedCrossRefGoogle Scholar
  32. Chambers, C, Russell, P 1991Deletion mutation in an eye lens beta-crystallin. An animal model for inherited cataractsJ Biol Chem26667426746PubMedGoogle Scholar
  33. Chiou, SH, Azari, P 1989Physicochemical characterization of alpha-crystallins from bovine lenses: hydrodynamic and conformational propertiesJ Protein Chem8117PubMedCrossRefGoogle Scholar
  34. Clark, R, Zigman, S, Lerman, S 1969Studies on the structural proteins of the human lensExp Eye Res8172182PubMedGoogle Scholar
  35. Clout, NJ, Basak, A, Wieligman, K, Bateman, OA, Jaenicke, R, Slingsby, C 2000The N-terminal domain of betaB2-crystallin resembles the putative ancestral homodimerJ Mol Biol304253257PubMedCrossRefGoogle Scholar
  36. Colvis, C, Garland, D 2002Posttranslational modification of human alpha A-crystallin: correlation with electrophoretic migrationArch Biochem Biophys397319323PubMedCrossRefGoogle Scholar
  37. Colvis, CM, Duglas-Tabor, Y, Werth, KB, Vieira, NE, Kowalak, JA, Janjani, A, Yergey, AL, Garland, DL 2000Tracking pathology with proteomics: identification of in vivo degradation products of alpha B-crystallinElectrophoresis2122192227PubMedCrossRefGoogle Scholar
  38. Cooper, PG, Aquilina, JA, Truscott, RJ, Carver, JA 1993aSupramolecular order within the lens: 1H NMR spectroscopic evidence for specific crystallin-crystallin interactionsExp Eye Res59607616CrossRefGoogle Scholar
  39. Cooper, PG, Carver, JA, Truscott, RJ 1993b1H-NMR spectroscopy of bovine lens beta-crystallin. The role of the beta B2-crystallin C-terminal extension in aggregationEur J Biochem213321328CrossRefGoogle Scholar
  40. Datiles, MB, Schumer, DJ, Zigler, Js,Jr, Russell, P, Anderson, L, Garland, D 1992Two-dimensional gel electrophoretic analysis of human lens proteinsCurr Eye Res11669677PubMedGoogle Scholar
  41. David, LL, Calvin, HI, Fu, SC 1994Buthionine sulfoximine induced cataracts in mice contain insolubilized crystallins with calpain II cleavage sitesExp Eye Res59501504PubMedCrossRefGoogle Scholar
  42. David, LL, Lampi, KJ, Lund, AL, Smith, JB 1996The sequence of human betaB1-crystallin cDNA allows mass spectrometric detection of betaB1 protein missing portions of its N-terminal extensionJ Biol Chem27142734279PubMedCrossRefGoogle Scholar
  43. David, LL, Shearer, TR 1984Calcium-activated proteolysis in the lens nucleus during selenite cataractogenesisInvest Ophthalmol Vis Sci2512751283PubMedGoogle Scholar
  44. David, LL, Shearer, TR 1993bBeta-crystallin insolubilized by calpain II in vitro contain cleavage sites similar to beta-crystallins insolubilized during cataractFEBS Lett324265270CrossRefGoogle Scholar
  45. David, LL, Shearer, TR, Shih, M 1993aSequence analysis of lens beta-crystallins suggests involvement of calpain in cataract formationJ Biol Chem26819371940Google Scholar
  46. de Vries, AC, Vermeer, MA, Hendriks, AL, Bloemendal, H, Cohen, LH 1991Biosynthetic capacity of the human lens upon agingExp Eye Res53519524PubMedCrossRefGoogle Scholar
  47. Delaye, M, Tardieu, A 1983Short-range order of crystallin proteins accounts for eye lens transparencyNature302415417PubMedCrossRefGoogle Scholar
  48. Dewey, J, Bartling, C, Rae, JL 1995A non-enzymatic method for lens decapsulation which leaves the epithelial cells attached to the fibersCurr Eye Res14357362PubMedGoogle Scholar
  49. Dole, M, Mach, LL, Hines, RL, Mobley, RC, Ferguson, LD, Alice, MB 1968Molecular beams of macroionsJ Chem Phys4922402247CrossRefGoogle Scholar
  50. Driessen, HP, Herbrink, P, Bloemendal, H, de Jong, WW 1981Primary structure of the bovine beta-crystallin Bp chain. Internal duplication and homology with gamma-crystallinEur J Biochem1218391PubMedCrossRefGoogle Scholar
  51. Edman, P 1949A method for the determination of the amino acid sequence in peptidesArch Biochem22475476PubMedGoogle Scholar
  52. Emmons, T, Takemoto, L 1992Age-dependant loss of the C-terminal amino acid from alpha crystallinExp Eye Res55551554PubMedCrossRefGoogle Scholar
  53. Farnsworth, PN, Groth-Vasselli, B, Greenfield, NJ, Singh, K 1997Effects of temperature and concentration on bovine lens alpha-crystallin secondary structure: a circular dichroism spectroscopic studyInt J Biol Macromol20283291PubMedCrossRefGoogle Scholar
  54. Feng, J, Smith, DL, Smith, JB 2000Human lens beta-crystallin solubilityJ Biol Chem2751158511590PubMedCrossRefGoogle Scholar
  55. Fenn, JB, Mann, M, Meng, CK, Wong, SF, Whitehouse, CM 1989Electrospray ionization for mass spectrometry of large biomoleculesScience2466471PubMedGoogle Scholar
  56. Fernald, RD, Wright, SE 1983Maintenance of optical quality during crystalline lens growthNature301618620PubMedCrossRefGoogle Scholar
  57. FitzGerald, PG 1988Age-related changes in a fiber cell-specific extrinsic membrane proteinCurr Eye Res712551262PubMedGoogle Scholar
  58. Fujii, N, Awakura, M, Takemoto, L, Inomata, M, Takata, T, Fujii, N, Saito, T 2003Characterization of alpha A-crystallin from high molecular weight aggregates in the normal human lensMol Vis9315322PubMedGoogle Scholar
  59. Fujii, N, Matsumoto, S, Hiroki, K, Takemoto, L 2001Inversion and isomerization of Asp-58 residue in human alpha A-crystallin from normal aged lenses and cataractous lensesBiochim Biophys Acta1549179187PubMedGoogle Scholar
  60. Fujii, N, Satoh, K, Harada, K, Ishibashi, Y 1994Simultaneous stereoinversion and isomerization at specific aspartic acid residues in alpha A-crystallin from human lensJ Biochem (Tokyo)116663669Google Scholar
  61. Fujii, N, Takemoto, LJ, Momose, Y, Matsumoto, S, Hiroki, K, Akaboshi, M 1999Formation of four isomers at the asp- 151 residue of aged human alpha A-crystallin by natural agingBiochem Biophys Res Commun265746751PubMedCrossRefGoogle Scholar
  62. Fujii, N, Takeuchi, N, Fujii, N, Tezuka, T, Kuge, K, Takata, T, Kamei, A, Saito, T 2004Comparison of post-translational modifications of alpha A-crystallin from normal and hereditary cataract ratsAmino Acids26147152PubMedCrossRefGoogle Scholar
  63. Fung, KY, Askovic, S, Basile, F, Duncan, MW 2004A simple and inexpensive approach to interfacing high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time of flight-mass spectrometryProteomics431213127PubMedCrossRefGoogle Scholar
  64. Garadi, R, Katar, M, Maisel, H 1983Two-dimensional gel analysis of chick lens proteinsExp Eye Res36859869PubMedCrossRefGoogle Scholar
  65. Garber, AT, Goring, D, Gold, RJ 1984Characterization of abnormal proteins in the soluble lens proteins of CatFraser miceJ Biol Chem2591037610379PubMedGoogle Scholar
  66. Garland, DL, Duglas-Tabor, Y, Yimenez-Asensio, J, Datiles, MB, Magno, B 1996The nucleus of the human lens: demonstration of a highly characteristic protein pattern by two-dimensional electrophoresis and introduction of a new method of lens dissectionExp Eye Res62285291PubMedCrossRefGoogle Scholar
  67. Garner, B, Shaw, DC, Lindner, RA, Carver, JA, Truscott, RJ 2000Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataractBiochim Biophys Acta1476265278PubMedGoogle Scholar
  68. Gesierich, U, Pfeil, W 1996The conformational stability of alpha-crystallin is rather low: calorimetric resultsFEBS Lett393151154PubMedCrossRefGoogle Scholar
  69. Gong, X, Li, E, Klier, G, Huang, Q, Wu, Y, Lei, H, Kumar, NM, Horwitz, J, Gilula, NB 1997Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in miceCell91833843PubMedCrossRefGoogle Scholar
  70. Goodenough, DA 1992The crystalline lens. A system networked by gap junctional intercellular communicationSemin Cell Biol34958PubMedCrossRefGoogle Scholar
  71. Goring, DR, Breitman, ML, Tsui, LC 1992Temporal regulation of six crystallin transcripts during mouse lens developmentExp Eye Res54785795PubMedCrossRefGoogle Scholar
  72. Graw, J 1997The crystallins: genes, proteins and diseasesBiol Chem27813311348Google Scholar
  73. Graw, J 2003The genetic and molecular basis of congenital eye defectsNat Rev Genet4876888PubMedCrossRefGoogle Scholar
  74. Graw, J, Liebstein, A, Pietrowski, D, Schmitt-John, T, Werner, T 1993Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallinsGene136145156PubMedCrossRefGoogle Scholar
  75. Groenen, PJ, Merck, KB, de Jong, WW, Bloemendal, H 1994Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathologyEur J Biochem225119PubMedCrossRefGoogle Scholar
  76. Haley, DA, Horwitz, J, Stewart, PL 1998The small heat-shock protein, alpha B-crystallin, has a variable quaternary structureJ Mol Biol2772735PubMedCrossRefGoogle Scholar
  77. Hanson, SR, Hasan, A, Smith, DL, Smith, JB 2000The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavageExp Eye Res71195207PubMedCrossRefGoogle Scholar
  78. Hanson, SR, Smith, DL, Smith, JB 1998Deamidation and disulfide bonding in human lens gamma-crystallinsExp Eye Res67301312PubMedCrossRefGoogle Scholar
  79. Harding, JJ 1972Conformational changes in human lens proteins in cataractBiochem J12997100PubMedGoogle Scholar
  80. Harding, JJ 2002Viewing molecular mechanisms of ageing through a lensAgeing Res Rev1465479PubMedCrossRefGoogle Scholar
  81. Harrington, V, McCall, S, Huynh, S, Srivastava, K, Srivastava, OP 2004Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lensesMol Vis10476489PubMedGoogle Scholar
  82. Hasan, A, Smith, DL, Smith, JB 2002Alpha-crystallin regions affected by adenosine 5′-triphosphate identified by hydrogen-deuterium exchangeBiochemistry411587515882CrossRefGoogle Scholar
  83. Hejtmancik, JF, Wingfield, PT, Chambers, C, Russel, P, Chen, HC, Sergeev, YV, Hope, JN 1997Association properties of betaB2- and betaA3-crystallin: ability to form dimersProtein Eng1013471352PubMedCrossRefGoogle Scholar
  84. Hejtmancik, JF, Wingfield, PT, Sergeev, YV 2004Beta-crystallin associationExp Eye Res79377383CrossRefGoogle Scholar
  85. Hendriks, W, Weetnik, H, Voorter, CE, Sanders, J, Bloemendal, H, de Jong, WW 1990The alternative splicing product alpha Ains-crystallin is structurally equivalent to alpha A and alpha B subunits in the rat alpha crystallin aggregateBiochim Biophys Acta10375865PubMedGoogle Scholar
  86. Hoehenwarter W, Ackermann R, Zimny-Arndt U, Kumar NM, Jungblut PR (2006) The necessity of functional proteomics: protein species and molecular function elucidation exemplified by in vivo alpha A crystallin N-terminal truncation. Amino Acids (in press)Google Scholar
  87. Hoehenwarter, W, Kumar, NM, Wacker, M, Zimny-Arndt, U, Klose, J, Jungblut, PR 2005Eye lens proteomics: from global approach to detailed information about phakinin and gamma E and F crystallin genesProteomics5245257PubMedCrossRefGoogle Scholar
  88. Horwitz, J 1992Alpha-crystallin can function as a molecular chaperoneProc Natl Acad Sci USA891044910453PubMedCrossRefGoogle Scholar
  89. Horwitz, J, Huang, QL, Ding, L, Bova, MP 1998Lens alpha-crystallin: chaperone like propertiesMethods Enzymol290365383PubMedCrossRefGoogle Scholar
  90. Ireland, M, Maisel, H 1984A cytoskeltetal protein unique to lens fiber cell differentiationExp Eye Res38637645PubMedCrossRefGoogle Scholar
  91. Ireland, M, Maisel, H 1989A family of lens fiber cell specific proteinsLens Eye Toxic Res6623638PubMedGoogle Scholar
  92. Iwaki, T, Kume-Iwaki, A, Goldman, JE 1990Cellular distribution of alpha B-crystallin in non-lenticular tissuesJ Histochem Cytochem383139PubMedGoogle Scholar
  93. Jedziniak, JA, Nicoli, DF, Baram, H, Benedek, GB 1978Quantative verification of the existence of high molecular weight protein aggregates in the intact normal human lens by light-scattering spectroscopyInvest Ophthalmol Vis Sci175157PubMedGoogle Scholar
  94. Jimenez-Asensio, J, Colvis, CM, Kowalak, JA, Duglas-Tabor, Y, Datiles, MB, Moroni, M, Mura, U, Rao, CM, Balasubramanian, D, Janjani, A, Garland, D 1999An atypical form of alpha B-crystallin is present in high concentration in some human cataractous lenses. Identification and characterization of aberrant N- and C-terminal processingJ Biol Chem2743228732294PubMedCrossRefGoogle Scholar
  95. Jungblut, P, Klose, J 1985Genetic variability of proteins from mitochondria and mitochondrial fractions of mouse organsBiochem Genet23227245PubMedCrossRefGoogle Scholar
  96. Jungblut, P, Thiede, B 1997Protein identification from 2-DE gels by MALDI mass spectrometryMass Spectrom Rev16145162PubMedCrossRefGoogle Scholar
  97. Jungblut, P, Thiede, B, Zimny-Arndt, U, Müller, EC, Scheler, C, Wittmann-Liebold, B, Otto, A 1996Resolution power of two-dimensional electrophoresis and identification of proteins from gelsElectrophoresis17839847PubMedCrossRefGoogle Scholar
  98. Jungblut, PR, Otto, A, Favor, J, Lowe, M, Muller, EC, Kastnetr, M, Sperling, K, Klose, J 1998Identification of mouse crystallins in 2D protein patterns by sequencing and mass spectrometry. Application to cataract mutantsFEBS Lett435131137PubMedCrossRefGoogle Scholar
  99. Kamei, A, Iwase, H, Masuda, K 1997Cleavage of amino acid residue(s) from the N-terminal region of alpha A- and alpha B-crystallins in human crystalline lens during agingBiochem Biophys Res Commun231373378PubMedCrossRefGoogle Scholar
  100. Kamei, A, Takeuchi, N, Nagai, M, Mori, S 2003Post-translational modification of beta H-crystallin of bovine lens with agingBiol Pharm Bull2617151720PubMedCrossRefGoogle Scholar
  101. Karas, M, Hillenkamp, F 1988Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltonsAnal Chem6022992301PubMedCrossRefGoogle Scholar
  102. Kelley, MJ, David, LL, Iwasaki, N, Wright, J, Shearer, TR 1993alpha-Crystallin chaperone activity is reduced by calpain II in vitro and in selenite cataractJ Biol Chem2681884418849PubMedGoogle Scholar
  103. Kibbelaar, M, Bloemendal, H 1975The topography of lens proteins based on chromatography and two-dimensional gel electrophoresisExp Eye Res212536PubMedCrossRefGoogle Scholar
  104. Kibbelaar, MA, Bloemendal, H 1979Fractionation of the water-insoluble proteins from calf lensExp Eye Res29679688PubMedCrossRefGoogle Scholar
  105. Kilby GW (1995a) Electrospray mass spectrometry of peptides and lens proteins. Ph.D. Thesis, The University of Wollongong, AustraliaGoogle Scholar
  106. Kilby, GW, Carver, JA, Zhu, JL, Sheil, MM, Truscott, RJ 1995bLoss of the C-terminal serine residue from bovine beta B2-crystallinExp Eye Res60465469CrossRefGoogle Scholar
  107. Kilby, GW, Sheil, MM, Shaw, D, Harding, JJ, Truscott, RJ 1997Amino acid sequence of bovine gamma E (IVa) lens crystallinProtein Sci6909912PubMedGoogle Scholar
  108. Kleiman, NJ, Chiesa, R, Kolks, MA, Spector, A 1988Phosphorylation of beta-crystallin B2 (beta Bp) in the bovine lensJ Biol Chem2631497814983PubMedGoogle Scholar
  109. Klemenz, R, Frohli, E, Steiger, RH, Schafer, R, Aoyama, A 1991Alpha B-crystallin is a small heat shock proteinProc Natl Acad Sci USA8836523655PubMedCrossRefGoogle Scholar
  110. Klose, J 1975Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammalsHumangenetik26231243PubMedGoogle Scholar
  111. Klose, J, Kobalz, U 1995Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genomeElectrophoresis1610341059PubMedCrossRefGoogle Scholar
  112. Klose, J, Nock, C, Herrmann, M, Stühler, K, Marcus, K, Blüggel, M, Krause, E, Schalwyk, LC, Rastan, S, Brown, SDM, Büssow, K, Himmelbauer, H, Lehrach, H 2002Genetic analysis of the mouse brain proteomeNat Genet30385393PubMedCrossRefGoogle Scholar
  113. Koretz, JF, Handelman, GH 1988How the human eye focusesSci Am2599299PubMedCrossRefGoogle Scholar
  114. Krah, A, Miehlke, S, Pleissner, KP, Zimny-Arndt, U, Kirsch, C, Lehn, N, Meyer, TF, Jungblut, PR, Aebischer, T 2004Identification of candidate antigens for serologic detection of Helicobacter pylori-infected patients with gastric carcinomaInt J Cancer108456463PubMedCrossRefGoogle Scholar
  115. Kröger, RH, Campbell, MC, Munger, R, Fernald, RD 1994Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni Vis Res3418151822PubMedCrossRefGoogle Scholar
  116. Kuszak, JR, Peterson, KL, Sivak, JG, Herbert, KL 1994The interrelationship of lens anatomy and optical quality. II. Primate lensesExp Eye Res59521535PubMedCrossRefGoogle Scholar
  117. Kuwabara, T 1975The maturation of the lens cell: a morphologic studyExp Eye Res20427443PubMedCrossRefGoogle Scholar
  118. Lambert, S 1994LensAlbert, DJakobiec, F eds. Principles and practices of ophthalmologySaundersPhiladelphiaGoogle Scholar
  119. Lampi, K, Shih, M, Ueda, Y, Shearer, TR, David, LL 2002Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis mapInvest Ophthalmol Vis Sci43216224PubMedGoogle Scholar
  120. Lampi, KJ, Ma, Z, Hanson, SR, Azuma, M, Shih, M, Shearer, TR, Smith, DL, Smith, JB, David, LL 1998Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometryExp Eye Res673143PubMedCrossRefGoogle Scholar
  121. Lampi, KJ, Ma, Z, Shih, M, Shearer, TR, Smith, JB, Smith, DL, David, LL 1997Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lensJ Biol Chem27222682275PubMedCrossRefGoogle Scholar
  122. Lampi, KJ, Oxford, JT, Bachinger, HP, Shearer, TR, David, LL, Kapfer, DM 2001Deamidation of human beta B1 alters the elongated structure of the dimerExp Eye Res72279288PubMedCrossRefGoogle Scholar
  123. Lapko, VN, Pukiss, AG, Smith, DL, Smith, JB 2002Deamidation in human gamma S-crystallin from cataractous lenses is influenced by surface exposureBiochemistry4186388648PubMedCrossRefGoogle Scholar
  124. Lapko, VN, Smith, DL, Smith, JB 2001In vivo carbamylation and acetylation of water-soluble human lens alpha B-crystallin lysine 92Protein Sci1011301136PubMedCrossRefGoogle Scholar
  125. Lapko, VN, Smith, DL, Smith, JB 2003aExpression of beta A2 crystallin in human lensesExp Eye Res77383385CrossRefGoogle Scholar
  126. Lapko, VN, Smith, DL, Smith, JB 2003bMethylation and carbamylation of human gamma-crystallinsProtein Sci1217621774CrossRefGoogle Scholar
  127. Li, LK, Roy, D, Spector, A 1986Changes in lens protein in concentric fractions from individual normal human lensesCurr Eye Res5127135PubMedGoogle Scholar
  128. Li, W, Calvin, HI, David, LL, Wu, K, McCormack, AL, Zhu, GP, Fu, SC 2002Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataractsExp Eye Res75335346PubMedGoogle Scholar
  129. Lin, P, Smith, DL, Smith, JB 1997In vivo modification of the C-terminal lysine of human lens alpha B-crystallinExp Eye Res65673680PubMedCrossRefGoogle Scholar
  130. Lin, PP, Barry, RC, Smith, DL, Smith, JB 1998In vivo acetylation identified at lysine 70 of human lens alpha A-crystallinProtein Sci714511457PubMedGoogle Scholar
  131. Link, AJ, Eng, J, Schieltz, DM, Carmack, E, Mize, GJ, Morris, DR, Garvik, BM, Yates, JR,3rd 1999Direct analysis of protein complexes using mass spectrometryNat Biotechnol17676682PubMedCrossRefGoogle Scholar
  132. Lok, S, Tsui, LC, Shinohara, T, Piatigorsky, J, Gold, R, Breitman, M 1984Analysis of the mouse gamma-crystallin gene family: assignment of multiple cDNAs to discrete genomic sequences and characterization of a representative geneNucleic Acids Res1245174529PubMedGoogle Scholar
  133. Lubsen, NH, Aarts, HJ, Schoenmakers, JG 1988The evolution of lenticular proteins: the beta- and gamma-crystallin super gene familyProg Biophys Mol Biol514776PubMedCrossRefGoogle Scholar
  134. Lund, AL, Smith, JB, Smith, DL 1996Modifications of the water-insoluble human lens alpha-crystallinsExp Eye Res63661672PubMedCrossRefGoogle Scholar
  135. Ma, Z, Hanson, SR, Lampi, KJ, David, LL, Smith, DL, Smith, JB 1998Age-related changes in human lens crystallins identified by HPLC and mass spectrometryExp Eye Res672130PubMedCrossRefGoogle Scholar
  136. MacCoss, MJ, McDonald, WH, Saraf, A, Sadygov, R, Clark, JM, Tasto, JJ, Gould, KL, Wolters, D, Washburn, M, Weiss, A, Clark, JI, Yates, JR,3rd 2002Shotgun identification of protein modifications from protein complexes and lens tissueProc Natl Acad Sci USA9979007905PubMedCrossRefGoogle Scholar
  137. Maisel, H, Perry, MM 1972Electron microscope observations on some structural proteins of the chick lensExp Eye Res14712PubMedCrossRefGoogle Scholar
  138. Mann, M, Hendrickson, RC, Pandey, A 2001Analysis of proteins and proteomes by mass spectrometryAnnu Rev Biochem70437473PubMedCrossRefGoogle Scholar
  139. Mathias, RT, Rae, JL, Baldo, GJ 1997Physiological properties of the normal lensPhysiol Rev772150PubMedGoogle Scholar
  140. McCormack, AL, Schieltz, DM, Goode, B, Yang, S, Barnes, G, Drubin, D, Yates, JR,3rd 1997Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole levelAnal Chem69767776PubMedCrossRefGoogle Scholar
  141. Messmer, M, Chakrabarti, B 1988High-molecular-weight protein aggregates of calf and cow lens: spectroscopic evaluationExp Eye Res47173183PubMedCrossRefGoogle Scholar
  142. Miesbauer, LR, Zhou, X, Yang, Z, Yang, Z, Sun, Y, Smith, DL, Smith, JB 1994Post-translational modifications of water-soluble human lens crystallins from young adultsJ Biol Chem2691249412502PubMedGoogle Scholar
  143. Minassian, DC, Mehra, V 19903.8 million blinded by cataract each year: projections from the first epidemiological study of incidence of cataract blindness in IndiaBr J Ophthalmol74341343PubMedGoogle Scholar
  144. Mörner, CT 1894Untersuchung der Proteinsubstanzen in den leichtbrechenden Medien des AugesZ Physiol Chem1861106Google Scholar
  145. Nagele, E, Vollmer, M 2004Coupling of nanoflow liquid chromatography to matrix-assisted laser desorption/ionization mass spectrometry: real-time liquid chromatography run mapping on a MALDI plateRapid Commun Mass Spectrom1830083014PubMedCrossRefGoogle Scholar
  146. Norledge, BV, Mayr, EM, Glockshuber, R, Bateman, OA, Slingsby, C, Jaenicke, R, Driessen, HP 1996The X-ray structures of two mutant crystallin domains shed light on the evolution of multi-domain proteinsNat Struct Biol3267274PubMedCrossRefGoogle Scholar
  147. O’Farrell, PH 1975High resolution two-dimensional electrophoresis of proteinsJ Biol Chem25040074021PubMedGoogle Scholar
  148. Ortwerth, BJ, Olesen, PR, Sharma, KK 1986Solubilization of the lens water-insoluble fraction by sonicationExp Eye Res43955963PubMedCrossRefGoogle Scholar
  149. Ortwerth, BJ, Olesen, PR 1989Studies on the nature of the water-insoluble fraction from aged bovine lensesExp Eye Res48605619PubMedCrossRefGoogle Scholar
  150. Ortwerth, BJ, Olesen, PR 1992Studies on the solubilization of the water-insoluble fraction from human lens and cataractExp Eye Res55777783PubMedCrossRefGoogle Scholar
  151. Papaconstantinou, J 1967Molecular aspects of lens cell differentiationScience156338346PubMedGoogle Scholar
  152. Paron, I, D’Elia, A, D’Ambrosio, C, Scaloni, A, D’Aurizio, F, Prescott, A, Damante, G, Tell, G 2004A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cellsBiochem J378929937PubMedCrossRefGoogle Scholar
  153. Pasta, SY, Raman, B, Ramakrishna, T, Rao, ChM 2003Role of the conserved SRLFDQFFG region of alpha-crystallin, a small heat shock protein. Effect on oligomeric size, subunit exchange and chaperone-like activityJ Biol Chem2785115951166PubMedCrossRefGoogle Scholar
  154. Puri, N, Augusteyn, RC, Owen, EA, Siezen, RJ 1983Immunochemical properties of vertebrate alpha-crystallinsEur J Biochem134321326PubMedCrossRefGoogle Scholar
  155. Rae, JL, Bartling, C, Rae, J, Mathias, RT 1996Dye transfer between cells of the lensJ Membr Biol15089103PubMedCrossRefGoogle Scholar
  156. Ramaekers, FC, Boomkens, TR, Bloemendal, H 1981Cytoskeletal and contractile structures in bovine lens cell differentiationExp Cell Res35454461CrossRefGoogle Scholar
  157. Ringens, PJ, Hoenders, HJ, Bloemendal, H 1982Protein distribution and characterization in the prenatal and postnatal human lensExp Eye Res34815823PubMedCrossRefGoogle Scholar
  158. Robinson, KR, Patterson, JW 1982–83Localization of steady currents in the lensCurr Eye Res2843847Google Scholar
  159. Sandilands, A, Prescott, AR, Carter, JM, Hutcheson, AM, Quinlan, RA, Richards, J, FitzGerald, PG 1995Vimentin and CP49/filensin form distinct networks in the lens which are independently modulated during lens fiber cell differentiationJ Cell Sci10813971406PubMedGoogle Scholar
  160. Schaefer, H, Marcus, K, Sickmann, A, Herrmann, M, Klose, J, Meyer, HE 2003Identification of phosphorylation and acetylation sites in alpha A-crystallin of the eye lens (mus musculus) after two-dimensional gel electrophoresisAnal Bioanal Chem376966972PubMedCrossRefGoogle Scholar
  161. Scheler, C, Müller, EC, Stahl, J, Müller-Werdan, U, Salnikow, J, Jungblut, P 1997Identification and characterization of heat shock protein 27 protein species in human myocardial 2-DE patternsElectrophoresis1828232831PubMedCrossRefGoogle Scholar
  162. Schey, KL, Little, M, Fowler, JG, Crouch, RK 2000Characterization of human lens major intrinsic protein structureInvest Ophthalmol Vis Sci41175182PubMedGoogle Scholar
  163. Schoenmakers, JG, Gerding, JJ, Bloemendal, H 1969The subunit structure of alpha-crystallin. Isolation and characterization of the S-carboxymethylated acidic subunits from adult and embryonic originEur J Biochem11472481PubMedCrossRefGoogle Scholar
  164. Shih, M, Lampi, KJ, Shearer, TR, David, LL 1998Cleavage of beta crystallins during maturation of bovine lensMol Vis4411PubMedGoogle Scholar
  165. Shinohara, T, Robinson, EA, Appella, E, Piatigorsky, J 1982Multiple gamma-crystallins of the mouse lens: fractionation of mRNAs by cDNA cloningProc Natl Acad Sci USA7927832787PubMedCrossRefGoogle Scholar
  166. Slingsby, C 1985Structural variation in lens crystallinsTrends Biochem Sci10281284CrossRefGoogle Scholar
  167. Slingsby, C, Bateman, OA 1990Quaternary interactions in eye lens beta-crystallins: basic and acidic subunits of beta-crystallins favor heterologous associationBiochemistry2965926599PubMedCrossRefGoogle Scholar
  168. Slingsby, C, Norledge, B, Simpson, A, Bateman, OA, Wright, G, Driessen, HPC, Lindley, PF, Moss, DS, Bax, B 1996X-ray diffraction and structure of crystallinsProg Retin Eye Res16329CrossRefGoogle Scholar
  169. Smith, JB, Liu, Y, Smith, DL 1996Identification of possible regions of chaperone activity in lens alpha-crystallinExp Eye Res63125128PubMedCrossRefGoogle Scholar
  170. Smith, JB, Sun, Y, Smith, DL, Green, B 1992Identification of the posttranslational modifications of bovine lens alpha B-crystallins by mass spectrometryProtein Sci1601608PubMedCrossRefGoogle Scholar
  171. Smith, JB, Thevenon-Emeric, G, Smith, DL, Green, B 1991Elucidation of the primary structures of proteins by mass spectrometryAnal Biochem193118124PubMedCrossRefGoogle Scholar
  172. Spector, A, Chiesa, R, Sredy, J, Garner, W 1985cAMP-dependent phosphorylation of bovine lens alpha-crystallinProc Natl Acad Sci USA8247124716PubMedCrossRefGoogle Scholar
  173. Srinivasan, AN, Nagineni, CN, Bhat, SP 1992alpha A-crystallin is expressed in non-occular tissuesJ Biol Chem2672333723341PubMedGoogle Scholar
  174. Srivastava, OP, Kirk, MC, Srivastava, K 2004Characterization of covalent multimers of crystallins in aging human lensesJ Biol Chem2791090110909PubMedCrossRefGoogle Scholar
  175. Srivastava, OP, Srivastava, K 1998Degradation of gamma D- and gamma S-crystallins in human lensesBiochem Biophys Res Commun253288294PubMedCrossRefGoogle Scholar
  176. Srivastava, OP, Srivastava, K, Harrington, V 1999Age-related degradation of beta A3/A1-crystallin in human lensesBiochem Biophys Res Commun258632638PubMedCrossRefGoogle Scholar
  177. Stiuso, P, Libondi, T, Facchiano, AM, Colicchio, P, Ferranti, P, Lilla, S, Colonna, G 2002Alteration in the ubiquitin structure and function in the human lens: a possible mechanism of senile cataractogenesisFEBS Lett531162167PubMedCrossRefGoogle Scholar
  178. Swanson, SK, Washburn, MP 2005The continuing evolution of shotgun proteomicsDrug Discov Today10719725PubMedCrossRefGoogle Scholar
  179. Takemoto, LJ 1995Identification of the in vivo truncation sites at the C-terminal region of alpha-A crystallin from aged bovine and human lensCurr Eye Res14837841PubMedGoogle Scholar
  180. Takemoto, LJ 1996Differential phosphorylation of alpha-A crystallin in human lens of different ageExp Eye Res62499504PubMedCrossRefGoogle Scholar
  181. Takemoto, LJ 1997Disulfide bond formation of cysteine-37 and cysteine-66 of beta B2 crystallin during cataractogenesis of the human lensExp Eye Res64609614PubMedCrossRefGoogle Scholar
  182. Tanaka, K, Waki, H, Ido, Y, Akita, S, Yoshida, Y, Yoshida, T 1988Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry Rapid Commun Mass Spectrom2151153CrossRefGoogle Scholar
  183. Tardieu, A, Laporte, D, Licinio, P, Krop, B, Delaye, M 1986Calf lens alpha-crystallin quaternary structure. A three-layer tetrahedral modelJ Mol Biol192711724PubMedCrossRefGoogle Scholar
  184. Thampi, P, Abraham, EC 2003Influence of the C-terminal residues on oligomerization of alpha A-crystallinBiochemistry421185711863PubMedCrossRefGoogle Scholar
  185. Thampi, P, Hassan, A, Smith, JB, Abraham, EC 2002Enhanced C-terminal truncation of alpha A- and alpha B-crystallins in diabetic lensesInvest Ophthalmol Vis Sci4332653272PubMedGoogle Scholar
  186. Toyofuku, H, Bentley, PJ 1970The effects of decapsulation on ion movements across the lens of the toad, Bufo marinus. Influence on drug actionsInvest Ophthalmol9959965PubMedGoogle Scholar
  187. Tumminia, SJ, Clark, JI, Richiert, DM, Mitton, KP, Duglas-Tabor, Y, Kowalak, JA, Garland, DL, Russell, P 2001Three distinct stages of lens opacification in transgenic mice expressing the HIV-1 proteaseExp Eye Res72115121PubMedCrossRefGoogle Scholar
  188. Ueda, Y, Duncan, MK, David, LL 2002aLens proteomics: the accumulation of crystallin modifications in the mouse lens with ageInvest Ophthalmol Vis Sci43205215Google Scholar
  189. Ueda, Y, Fukiage, C, Shih, M, Shearer, TR, David, LL 2002bMass measurements of C-terminally truncated alpha-crystallins from two-dimensional gels identify Lp82 as a major endopeptidase in rat lensMol Cell Proteomics1357365CrossRefGoogle Scholar
  190. Ueda, Y, McCormack, AL, Shearer, TR, David, LL 2001Purification and characterization of lens specific calpain (Lp82) from bovine lensExp Eye Res73625637PubMedCrossRefGoogle Scholar
  191. van den Oetelaar, PJ, van Someren, PF, Thomson, JA, Siezen, RJ, Hoenders, HJ 1990A dynamic quaternary structure of bovine alpha-crystallin as indicated from intermolecular exchange of subunitsBiochemistry2934883493PubMedCrossRefGoogle Scholar
  192. van der Ouderaa, FJ, de Jong, WW, Bloemendal, H 1973The amino-acid sequence of the alpha A2 chain of bovine alpha-crystallinEur J Biochem39207222PubMedCrossRefGoogle Scholar
  193. van Rens, GL, Raats, JM, Driessen, HP, Oldenburg, M, Wijnen, JT, Khan, PM, de Jong, WW, Bloemendal, H 1989Structure of the bovine eye lens gamma S-crystallin gene (formerly beta S)Gene78225233PubMedCrossRefGoogle Scholar
  194. Voorter, CE, de Haard-Hoekman, WA, Roersma, ES, Meyer, HE, Bloemendal, H, de Jong, WW 1989The in vivo phosphorylation sites of bovine alpha B-crystallinFEBS Lett2595052PubMedCrossRefGoogle Scholar
  195. Wang-Su, ST, McCormack, AL, Yang, S, Hosler, MR, Mixon, A, Riviere, MA, Wilmarth, PA, Andley, UP, Garland, D, Li, H, David, LL, Wagner, BJ 2003Proteome analysis of lens epithelia, fibers, and the HLE B-3 cell lineInvest Ophthalmol Vis Sci4448294836PubMedCrossRefGoogle Scholar
  196. Washburn, MP, Wolters, D, Yates, JR,3rd 2001Large-scale analysis of the yeast proteome by multidimensional protein identification technologyNat Biotechnol19242247PubMedCrossRefGoogle Scholar
  197. Wasinger, VC, Cordwell, SJ, Cerpa-Poljak, A, Yan, JX, Gooley, AA, Wilkins, MR, Duncan, MW, Harris, R, Williams, KL, Humphrey-Smith, I 1995Progress with gene-product mapping of the Mollicutes: mycoplasma genitaliumElectrophoresis1610901094PubMedCrossRefGoogle Scholar
  198. Werten, PJ, Vos, E, De Jong, WW 1999Truncation of beta A3/A1-crystallin during aging of the bovine lens; possible implications for lens optical qualityExp Eye Res6899103PubMedCrossRefGoogle Scholar
  199. Wilmarth, P, Taube, JR, Riviere, MA, Duncan, MK, David, LL 2004Proteomic and sequence analysis of chicken lens crystallins reveals alternate splicing and translational forms of beta B2 and beta A2 crystallinsInvest Ophthalmol Vis Sci4527052715PubMedCrossRefGoogle Scholar
  200. Wistow, G, Slingsby, C, Blundell, T, Driessen, H, DeJong, W, Bloemendal, H 1981Eye-lens proteins: the three-dimensional structure of beta-crystallin predicted from monomeric gamma-crystallinFEBS Lett133916PubMedCrossRefGoogle Scholar
  201. Wistow, GJ, Piatigorsky, J 1988Lens crystallins: the evolution and expression of proteins for a highly specialized tissueAnnu Rev Biochem57479504PubMedCrossRefGoogle Scholar
  202. Wistow, G, Wyatt, K, David, L, Gao, C, Bateman, O, Bernstein, S, Tomarev, S, Segovia, L, Slingsby, C, Vihtelic, T 2005gamma N-crystallin and the evolution of the betagamma-crystallin superfamily in vertebratesFEBS J27222762291PubMedCrossRefGoogle Scholar
  203. Wolters, DA, Washburn, MP, Yates, JR,3rd 2001An automated multidimensional protein identification technology for shotgun proteomicsAnal Chem7356835690PubMedCrossRefGoogle Scholar
  204. Yamashita, M, Fenn, JB 1984Electrospray ion source. Another variation on the free jet themeJ Phys Chem8844514459CrossRefGoogle Scholar
  205. Yates, JR,3rd 1998Mass spectrometry and the age of the proteomeJ Mass Spectrom33119PubMedCrossRefGoogle Scholar
  206. Yu, NT, DeNagel, DC, Pruett, PL, Kuck, JFR,Jr 1985Disulphide bond formation in the eye lensProc Natl Acad Sci USA82207214CrossRefGoogle Scholar
  207. Zarina, S, Slingsby, C, Jaenicke, R, Zaidi, ZH, Driessen, H, Srinivasan, N 1994Three-dimensional model and quaternary structure of the human eye lens protein gamma S-crystallin based on beta- and gamma-crystallin X-ray coordinates and ultracentrifugationProtein Sci318401846PubMedCrossRefGoogle Scholar
  208. Zhen, Y, Xu, N, Richardson, B, Becklin, R, Savage, JR, Blake, K, Peltier, JM 2004Development of an LC-MALDI method for the analysis of protein complexesJ Am Soc Mass Spectrom15803822PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • W. Hoehenwarter
    • 1
  • J. Klose
    • 2
  • P. R. Jungblut
    • 1
  1. 1.Max Planck Institute for Infection Biology, Core Facility Protein AnalysisBerlinGermany
  2. 2.Institute for Human Genetics, CharitéBerlinGermany

Personalised recommendations