Advertisement

Amino Acids

, Volume 29, Issue 4, pp 341–353 | Cite as

Principles of quantitative positron emission tomography

  • J. van den Hoff
Review Article

Summary.

The central distinguishing feature of positron emission tomography (PET) is its ability to investigate quantitatively regional cellular and molecular transport processes in vivo with good spatial resolution. This review wants to provide a concise overview of the established principles underlying quantitative data evaluations of the acquired PET images. Especially, the compartment modelling framework is discussed on which virtually all quantification methods utilized in PET are based. The aim of the review is twofold: first, to provide the reader with an idea of the theoretical framework and mathematical tools and second, to enable an intuitive grasp of the possibilities and limitations of a quantitative approach to PET data evaluation. This should facilitate an understanding of how PET measurements translate into quantities such as regional blood flow, volume of distribution, and metabolic rates of specific substrates.

Keywords: Positron emission tomography – PET – Tracer kinetics – Compartment modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassingthwaighte, JB 1977Physiology and theory of tracer washout technique for the estimation of myocardial blood flow estimation from tracer washout.Prog Cardiovasc Dis20165189PubMedCrossRefGoogle Scholar
  2. Bassingthwaighte JB, Goresky CA (1984) Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of physiology, sect. 2. The cardiovascular system, vol. IV. The microcirculation, chap. 13. American Physiological Society, Bethesda, pp 549–626Google Scholar
  3. Bassingthwaighte, JB, Holloway, GA,Jr 1976Estimation of blood flow with radioactive tracers.Semin Nucl Med6141161PubMedGoogle Scholar
  4. Bassingthwaighte, JB, Chan, IS, Wang, CY 1992Computationally efficient algorithms for convection-permeation-diffusion models for blood-tissue exchange.Ann Biomed Eng20687725PubMedGoogle Scholar
  5. Bassingthwaighte, JB, Winkler, B, King, RB 1997Potassium and thallium uptake in dog myocardium.J Nucl Med38264274PubMedGoogle Scholar
  6. Blomqvist, G 1984On the construction of functional maps in positron emission tomography.J Cereb Blood Flow Metab4629632PubMedGoogle Scholar
  7. Carson RE (2003) Tracer kinetic modeling in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography. Springer, London, pp 147–179Google Scholar
  8. Carson RE, Cunningham V, Gunn RN, van den Hoff J, Knudsen GM, Lammertsma AA, Leenders KL, Maguire RP, Müller-Schauenburg W (2003) PET pharmacokinetic course. In: Maguire RP, Leenders KL (eds) PET Pharmacokinetic course manual, University of Groningen, Groningen, The Netherlands and McGill University, Canada MontrealGoogle Scholar
  9. Jones T (2003) Historical development of functional in vivo studies using positron-emitting tracers. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography. Springer, London, pp 3–40Google Scholar
  10. Kety, SS, Schmidt, CF 1948The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values.J Clin Invest27476483Google Scholar
  11. Lassen N, Perl W (1979) Tracer kinetic methods in medical physiology. Raven Press, New YorkGoogle Scholar
  12. Logan, J, Fowler, JS, Volkow, ND, Wolf, AP, Dewey, SL, Schlyer, DJ, MacGregor, RR, Hitzemann, R, Bendriem, B, Gatley, SJ,  et al. 1990Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects.J Cereb Blood Flow Metab10740747PubMedGoogle Scholar
  13. Patlak, CS, Blasberg, RG, Fenstermacher, JD 1983Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data.J Cereb Blood Flow Metab317PubMedGoogle Scholar
  14. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cambridge University Press, CambridgeGoogle Scholar
  15. van den Hoff, J, Burchert, W, Müller-Schauenburg, W, Meyer, GJ, Hundeshagen, H 1993Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization.J Nucl Med3417701777PubMedGoogle Scholar
  16. Willemsen, ATM, van den Hoff, J 2002Fundamentals of quantitative PET data analysis.Curr Pharm Des815131526PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • J. van den Hoff
    • 1
  1. 1.PET Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center RossendorfDresdenGermany

Personalised recommendations