Effect of Proton Substitution in Li2RbH(SO4)2 Single Crystal Studied by Nuclear Magnetic Resonance Relaxation

  • Ae Ran LimEmail author
Original Paper


This study investigated the effect of proton substitution on the phase transitions of Li2RbH(SO4)2 crystals. In order to determine the effects on the molecular motions of Li2RbH(SO4)2 crystals, we compared nuclear magnetic resonance (NMR) relaxation measurements with those of LiRbSO4 crystals. The spin–lattice relaxation time of 87Rb shows similar trends in Li2RbH(SO4)2 and LiRbSO4 crystals, whereas that of 7Li shows different trends. The main effects produced by the substitution of protons are demonstrated in the variations of the phase transition temperatures and the molecular motions. Lithium and protons in Li2RbH(SO4)2 have higher mobilities than lithium in LiRbSO4.



This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07041593).


  1. 1.
    A. Kawada, A.R. McGhil, M.M. Labes, J. Chem. Phys. 52, 3121 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    M. Haile, D.A. Boysen, C.R. Chisholm, R.B. Merle, Nature 410, 901 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A.R. Lim, J. Phys. Condens. Matter 19, 116216 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    B. Heed, A. Lunden, K. Schroeder, Electrochim. Acta 22, 705 (1977)CrossRefGoogle Scholar
  5. 5.
    J.B. Goodenough, Proc. R. Soc. (Lond.) A393, 215 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    J.H. van der Mass, E.T.G. Lutz, Spectrochim. Acta A 30, 2005 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    S.R. Sahaya Prabaharan, P. Muthusubramanian, in Proceedings of the XII International Conference on Raman Spectroscopy (Columbia, South Carolina, USA, 13–17 Aug 1990), p. 182Google Scholar
  8. 8.
    S.R. Prabaharan, P. Muthusubramanian, Cryst. Res. Technol. 26, 833 (1991)CrossRefGoogle Scholar
  9. 9.
    A.R. Lim, Phys. B 407, 833 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A.R. Lim, Y. Paik, K.Y. Lim, Mater. Chem. Phys. 131, 471 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)Google Scholar
  12. 12.
    R. Bohmer, K.R. Jeffrey, M. Vogel, Prog. Nucl. Magn. Reson. Spectr. 50, 87 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Igarashi, H. Kitagawa, S. Takahashi, R. Yoshizaki, Y. Abe, Z. Naturforsch. Phys. Sci. 47, 313 (1992)Google Scholar
  14. 14.
    J. Dolinsekk, D. Arcon, B. Zalar, R. Pirc, R. Blinc, R. Kind, Phys. Rev. B 54, R6811 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    A.R. Lim, Solid State Nucl. Magn. Reson. 39, 14 (2011)CrossRefGoogle Scholar
  16. 16.
    N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Shiroishi, A. Nakata, S. Sawada, J. Phys. Soc. Jpn. 40, 911 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Shiroishi, S. Sawada, J. Phys. Soc. Jpn. 46, 148 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Analytical Laboratory of Advanced Ferroelectric CrystalJeonju UniversityJeonjuSouth Korea
  2. 2.Department of Science EducationJeonju UniversityJeonjuSouth Korea

Personalised recommendations