Applied Magnetic Resonance

, Volume 50, Issue 12, pp 1419–1428 | Cite as

Investigation of Multiple-Quantum NMR Coherence Growth and Intensity Profile in Silsesquioxanes

  • I. A. Avilova
  • A. V. Chernyak
  • S. G. Vasil’evEmail author
Original Paper


Multiple-quantum (MQ) nuclear magnetic resonance (NMR) was used to characterize the proton distribution in methyltrimethoxysilane gel (MS gel, [CH3SiO3/2]n) and octavinylsilsesquioxane (OVS, [CH2=CHSiO3/2]8). The Gaussian model of distribution of MQ coherence intensities was used to determine the effective 1H spin-cluster size (N). The growth rate was described by the exponents α in the scaling law of the form N ~ τα. The obtained values of α were 1.65 for MS gel and 1.78 for OVS. The magnitudes of the growth exponents were compared to the previously obtained values for hybrid organic–inorganic gels. The influence of the dipolar coupling strength and the arrangement of spins in these systems on the growth of MQ NMR coherences is discussed. The shape of MQ NMR coherence profiles was investigated. It was found that the intensity profiles of MQ NMR coherences at different excitation times in the investigated hybrid silica gels are similar and may be well approximated by a stretched exponential function.



The work was supported by the Russian Foundation for Basic Research, project no. 18-33-20166. The work has been performed using the equipment of the Multi-User Analytical Center of IPCP RAS. This work was performed as part of the state task, state registration No. 0089-2019-0002.


  1. 1.
    Y.S. Yen, A. Pines, J. Chem. Phys. 78(6), 3579 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    J. Baum, M. Munowitz, A.N. Garroway, A. Pines, J. Chem. Phys. 83(5), 2015 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    J. Baum, A. Pines, J. Am. Chem. Soc. 108(24), 7447 (1986)CrossRefGoogle Scholar
  4. 4.
    D.H. Levy, K.K. Gleason, J. Chem. Phys. 96(20), 8125 (1992)CrossRefGoogle Scholar
  5. 5.
    L.B. Moran, J.P. Yesinowski, Chem. Phys. Lett. 222(4), 363 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    K.K. Gleason, Multiple quantum NMR in solids. in Encyclopedia of Magnetic Resonance, eds. R.K. Harris, R. Wasylishen (John Wiley, Chichester). CrossRefGoogle Scholar
  7. 7.
    R. Mathew, C. Turdean-Ionescu, B. Stevensson, I. Izquierdo-Barba, A. Garcia, D. Arcos, M. Vallet-Regi, M. Eden, Chem. Mater. 25(9), 1877 (2013)CrossRefGoogle Scholar
  8. 8.
    O.N. Antzutkin, R. Tycko, J. Chem. Phys. 110(6), 2749 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    G. Teymoori, B. Pahari, E. Viswanathan, M. Eden, J. Magn. Reson. 236, 31 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Dodd, E.R.H.V. Eck, Solid State Nucl. Magn. Reson. 26(3), 121 (2004)CrossRefGoogle Scholar
  11. 11.
    K. Saalwächter, P. Ziegler, O. Spyckerelle, B. Haidar, A. Vidal, J.-U. Sommer, J. Chem. Phys. 119(6), 3468 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    N. Fatkullin, C. Mattea, S. Stapf, J. Chem. Phys. 139(19), 194905 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S.G. Vasil’ev, V.I. Volkov, E.A. Tatarinova, A.M. Muzafarov, N.A. Sipyagina, S.A. Lermontov, J. Non-Cryst. Solids 489, 6 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    E. Tatarinova, N. Vasilenko, A. Muzafarov, Molecules 22(10), 1768 (2017)CrossRefGoogle Scholar
  15. 15.
    S.G. Vasil’ev, V.I. Volkov, E.A. Tatarinova, A.M. Muzafarov, Appl. Magn. Reson. 45, 315 (2014)CrossRefGoogle Scholar
  16. 16.
    Z. Huang, J. Wu, X. Liu, H. Ji, R. He, R. Liu, P. Pimhataivoot, X. Chen, ACS Omega 3(4), 4054 (2018)CrossRefGoogle Scholar
  17. 17.
    R.H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev. 95(5), 1409 (1995)CrossRefGoogle Scholar
  18. 18.
    I. Penso, E.A. Cechinatto, G. Machado, C. Luvison, C.H. Wanke, O. Bianchi, M.R.F. Soares, J. Non-Cryst. Solids 428, 82 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    S. Lacelle, Adv. Magn. Opt. Reson. 16, 173 (1991)CrossRefGoogle Scholar
  20. 20.
    K.K. Gleason, Concepts Magn. Reson. 5(3), 199 (1993)CrossRefGoogle Scholar
  21. 21.
    G. Buntkowsky, E. Roessler, M. Taupitz, H.M. Vieth, J. Phys. Chem. A 101(1), 67 (1997)CrossRefGoogle Scholar
  22. 22.
    K.K. Gleason, TrAC, Trends Anal. Chem. 14(3), 104 (1995)CrossRefGoogle Scholar
  23. 23.
    S. Lacelle, S.J. Hwang, B.C. Gerstein, J. Chem. Phys. 99(11), 8407 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    E.B. Fel’dman, Appl. Magn. Reson. 45(8), 797 (2014)CrossRefGoogle Scholar
  25. 25.
    G.A. Alvarez, D. Suter, Phys. Rev. A 84(1), 012320 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Lundin, V.E. Zobov, J. Exp. Theor. Phys. 120(5), 762 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    A.A. Lundin, V.E. Zobov, Appl. Magn. Reson. 47(7), 701 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • I. A. Avilova
    • 1
  • A. V. Chernyak
    • 1
    • 2
  • S. G. Vasil’ev
    • 1
    Email author
  1. 1.Institute of Problems of Chemical Physics RASChernogolovkaRussian Federation
  2. 2.Science Center in Chernogolovka RASChernogolovkaRussian Federation

Personalised recommendations