Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 12, pp 1399–1407 | Cite as

Efficient Referencing of FSLG CPMAS HETCOR Spectra Using 2D 1H–1H MAS FSLG

  • Bharti Kumari
  • Martin Brodrecht
  • Torsten Gutmann
  • Hergen BreitzkeEmail author
  • Gerd BuntkowskyEmail author
Original Paper

Abstract

FSLG CPMAS HETCOR is a 2D solid-state NMR experiment which provides structural information and conformational correlation between a 1H and an X-nucleus. However, practical application of the experiment suffers from the chemical shift referencing problem on the indirect 1H dimension. In our paper, we present a novel 1H–1H MAS FSLG-based approach and its application to reference the FSLG CPMAS HETCOR which overcomes the 1H referencing in the 2D 1H-X HETCOR experiment. This approach works excellently irrespective of the sample type over a wide range of temperature.

Notes

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft under contract Bu-911-24-2 is gratefully acknowledged.

Supplementary material

723_2019_1156_MOESM1_ESM.docx (114 kb)
Supplementary material 1 (DOCX 113 kb)

References

  1. 1.
    J.D. Mao, B.S. Xing, K. Schmidt-Rohr, Environ. Sci. Technol. 2001, 35 (1928)Google Scholar
  2. 2.
    G. Buntkowsky, I. Sack, H.H. Limbach, B. Kling, J. Fuhrhop, J. Phys. Chem. B 101, 11265 (1997)CrossRefGoogle Scholar
  3. 3.
    M. Brodrecht, B. Kumari, H. Breitzke, T. Gutmann, G. Buntkowsky, Z. Phys. Chem. 232, 1127 (2018)CrossRefGoogle Scholar
  4. 4.
    G. Buntkowsky, Phys. Chem. Chem. Phys. 9, 4843 (2007)CrossRefGoogle Scholar
  5. 5.
    J.W. Wiench, Y.S. Avadhut, N. Maity, S. Bhaduri, G.K. Lahiri, M. Pruski, S. Ganapathy, J. Phys. Chem. B 111, 3877 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Vyalikh, T. Emmler, B. Grunberg, Y. Xu, I. Shenderovich, G.H. Findenegg, H.H. Limbach, G. Buntkowsky, Z. Phys, Chem. 221, 155 (2007)Google Scholar
  7. 7.
    J. García-Antón, M.R. Axet, S. Jansat, K. Philippot, B. Chaudret, T. Pery, G. Buntkowsky, H.-H. Limbach, Angew. Chem. Int. Ed. 47, 2074 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Geppi, S. Borsacchi, G. Mollica, C.A. Veracini, Appl. Spectrosc. Rev. 44, 1 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J.L. Rapp, Y.L. Huang, M. Natella, Y. Cai, V.S.Y. Lin, M. Pruski, Solid State Nucl. Magn. Reson. 35, 82 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Werner, N. Rothermel, H. Breitzke, T. Gutmann, G. Buntkowsky, Isr. J. Chem. 54, 60 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Schaefer, E.O. Stejskal, R. Buchdahl, Macromolecules 8, 291 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    J. Schaefer, E.O. Stejskal, J. Am. Chem. Soc. 98, 1031 (1976)CrossRefGoogle Scholar
  13. 13.
    B.J. van Rossum, H. Förster, H.J.M. de Groot, J. Magn. Reson. 124, 516 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    J. Trebosc, J.W. Wiench, S. Huh, V.S.Y. Lin, M. Pruski, J. Am. Chem. Soc. 127, 7587 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Senker, L. Seyfarth, J. Voll, Solid State Sci. 6, 1039 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J. Sehnert, J. Senker, Chem. Eur. J. 13, 6339 (2007)CrossRefGoogle Scholar
  17. 17.
    R.K. Harris, eMagRes (2008)Google Scholar
  18. 18.
    F. Taulelle, Fundamental Principles of NMR Crystallography (Wiley, Hoboken, 2009)CrossRefGoogle Scholar
  19. 19.
    S. Macholl, D. Tietze, G. Buntkowsky, CrystEngComm 15, 8627 (2013)CrossRefGoogle Scholar
  20. 20.
    J.A. Ripmeester, R.E. Wasylishen, CrystEngComm 15, 8598 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Martineau, J. Senker, F. Taulelle, Annual Reports on NMR Spectroscopy, vol. 82 (Academic Press, Cambridge, 2014), p. 1Google Scholar
  22. 22.
    D. Tietze, S. Voigt, D. Mollenhauer, G. Buntkowsky, Appl. Magn. Reson. 45, 841 (2014)CrossRefGoogle Scholar
  23. 23.
    D.L. Bryce, IUCrJ 4, 350 (2017)CrossRefGoogle Scholar
  24. 24.
    D.L. Bryce, F. Taulelle, Acta Crystallogr. C 73, 126 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Leskes, P.K. Madhu, S. Vega, Chem. Phys. Lett. 447, 370 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    M. Leskes, P.K. Madhu, S. Vega, J. Chem. Phys. 128, 052309 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    M. Leskes, S. Steuernagel, D. Schneider, P.K. Madhu, S. Vega, Chem. Phys. Lett. 466, 95 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    E. Vinogradov, P.K. Madhu, S. Vega, Chem. Phys. Lett. 314, 443 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    C. Coelho, J. Rocha, P.K. Madhu, L. Mafra, J. Magn. Reson. 194, 264 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    S.F. Dec, C.E. Bronnimann, R.A. Wind, G.E. Maciel, J. Magn. Reson. 82, 454 (1989)ADSGoogle Scholar
  31. 31.
    B. Kumari, M. Brodrecht, H. Breitzke, M. Werner, B. Grünberg, H.-H. Limbach, S. Forg, E.P. Sanjon, B. Drossel, T. Gutmann, G. Buntkowsky, J. Phys. Chem. C 122, 19540 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Brodrecht, B. Kumari, A.S.S.L. Thankamony, H. Breitzke, T. Gutmann, G. Buntkowsky, Chem. Eur. J. 25, 5214 (2019)CrossRefGoogle Scholar
  33. 33.
    D. Reichert, G. Hempel, Concepts Magn. Reson. 14, 130 (2002)CrossRefGoogle Scholar
  34. 34.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Eduard-Zintl Institut für Anorganische und Physikalische ChemieTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and TechnologyUniversity of KasselKasselGermany

Personalised recommendations