Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 9, pp 1049–1058 | Cite as

Occurrence of Mixed Phase in \(\text {Bi}_{0.5}\text {Sr}_{0.5}\text {Mn}_{0.9}\text {Cr}_{0.1}\text {O}_3\) Bulk Sample: Electron Paramagnetic Resonance and Magnetization Studies

  • K. S. BhagyashreeEmail author
  • Lora Rita Goveas
  • S. V. Bhat
Original Paper
  • 21 Downloads

Abstract

We study the effects of 10% Cr substitution in Mn sites of Bi\(_{0.5}\)Sr\(_{0.5}\)MnO\(_3\) on the antiferromagnetic (AFM) (\(T_{\text {N}} \sim \) 110 K) transition using structural, magnetic and electron paramagnetic resonance (EPR) techniques. Field cooled (FC) and zero field cooled (ZFC) magnetization measurements done from 400 K down to 4 K show that the compound is in the paramagnetic (PM) phase till 50 K where it undergoes a transition to a short-range ferromagnetic phase (FM). Electron paramagnetic resonance measurements performed in the temperature range of 300 K to 80 K conform with the magnetization measurements as symmetric signals are observed owing to the paramagnetic phase. Below 80 K, signals become asymmetric. Electron paramagnetic resonance intensity peaks at \(\sim \) 110 K, the decreasing intensity below this temperature confirming the presence of antiferromagnetism. We conclude that below 50 K the magnetization and EPR results are consistent with a cluster glass phase of BSMCO, where ferromagnetic clusters coexist with an antiferromagnetic background.

Notes

Acknowledgements

SVB thanks the National Academy of Sciences, India for the award of a Senior Scientist Platinum Jubilee Fellowship.

References

  1. 1.
    Y. Tokura, Colossal Magnetoresistive Oxides (CRC Press, London, 2000)Google Scholar
  2. 2.
    C.N.R. Rao, B. Raveau, Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides (World Scientific, Singapore, 1998)Google Scholar
  3. 3.
    T.V. Ramakrishnan, J. Phys. Condens. Matter 19(12), 125211 (2007)ADSGoogle Scholar
  4. 4.
    E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344(1), 1 (2001)ADSGoogle Scholar
  5. 5.
    S.S. Rao, K.N. Anuradha, S. Sarangi, S.V. Bhat, Appl. Phys. Lett. 87(18), 182503 (2005)ADSGoogle Scholar
  6. 6.
    S.S. Rao, S. Tripathi, D. Pandey, S.V. Bhat, Phys. Rev. B 74, 144416 (2006)ADSGoogle Scholar
  7. 7.
    A. Sharma, S.V. Bhat, Appl. Magn. Reson. 33(1), 11 (2008)Google Scholar
  8. 8.
    C.M. Xiong, J.R. Sun, R.W. Li, S.Y. Zhang, T.Y. Zhao, B.G. Shen, J. Appl. Phys. 95(3), 1336 (2004)ADSGoogle Scholar
  9. 9.
    J. Dho, W.S. Kim, N.H. Hur, Phys. Rev. Lett. 89, 027202 (2002)ADSGoogle Scholar
  10. 10.
    I.O. Troyanchuk, M.V. Bushinsky, V.V. Eremenko, V.A. Sirenko, H. Szymczak, Low Temp. Phys. 28(1), 45 (2002)ADSGoogle Scholar
  11. 11.
    I. Troyanchuk, N. Pushkarev, M. Bushinski, E. Hamari-Sile, Phys. Solid State 48(7), 1315 (2006)ADSGoogle Scholar
  12. 12.
    T. Katsufuji, S.W. Cheong, S. Mori, C.H. Chen, J. Phys. Soc. Jpn. 68(4), 1090 (1999)ADSGoogle Scholar
  13. 13.
    S. Yamada, E. Sugano, T. Arima, J. Solid State Chem. 179(10), 3121 (2006)ADSGoogle Scholar
  14. 14.
    M. Hervieu, A. Maignan, C. Martin, N. Nguyen, B. Raveau, Chem. Mater. 13(4), 1356 (2001)Google Scholar
  15. 15.
    A. Kirste, M. Goiran, M. Respaud, J. Vanaken, J.M. Broto, H. Rakoto, M. von Ortenberg, C. Frontera, J.L. García-Muñoz, Phys. Rev. B 67, 134413 (2003)ADSGoogle Scholar
  16. 16.
    S.S. Rao, S.V. Bhat, J. Nanosci. Nanotechnol. 7(6), 2025 (2007)Google Scholar
  17. 17.
    S. Thakur, O. Pandey, K. Singh, Ceram. Int. 39(6), 6165 (2013)Google Scholar
  18. 18.
    M. Itoh, I. Natori, S. Kubota, K. Motoya, J. Phys. Soc. Jpn. 63(4), 1486 (1994)ADSGoogle Scholar
  19. 19.
    H. Woo, T.A. Tyson, M. Croft, S.W. Cheong, J. Phys. Condens. Matter 16(15), 2689 (2004)ADSGoogle Scholar
  20. 20.
    A. Maignan, C. Martin, F. Damay, B. Raveau, J. Hejtmanek, Phys. Rev. B 58, 2758 (1998)ADSGoogle Scholar
  21. 21.
    J.P. Joshi, S.V. Bhat, J. Magn. Reson. 168(2), 284 (2004)ADSGoogle Scholar
  22. 22.
    A. Shengelaya, G.-m. Zhao, H. Keller, K.A. Müller, Phys. Rev. Lett. 77, 5296 (1996)Google Scholar
  23. 23.
    M.T. Causa, M. Tovar, A. Caneiro, F. Prado, G. Ibañez, C.A. Ramos, A. Butera, B. Alascio, X. Obradors, S. Piñol, F. Rivadulla, C. Vázquez-Vázquez, M.A. López-Quintela, J. Rivas, Y. Tokura, S.B. Oseroff, Phys. Rev. B 58, 3233 (1998)ADSGoogle Scholar
  24. 24.
    D.L. Huber, G. Alejandro, A. Caneiro, M.T. Causa, F. Prado, M. Tovar, S.B. Oseroff, Phys. Rev. B 60, 12155 (1999)ADSGoogle Scholar
  25. 25.
    S.L. Yuan, G. Li, Y. Jiang, J.Q. Li, X.Y. Zeng, Y.P. Yang, Z. Huang, S.Z. Jin, J. Phys. Condens. Matter 12(6), L109 (2000)ADSGoogle Scholar
  26. 26.
    M.S. Seehra, T.C. Jr., Solid State Commun. 8(10), 787 (1970)Google Scholar
  27. 27.
    D.L. Huber, Phys. Rev. B 6, 3180 (1972)ADSGoogle Scholar
  28. 28.
    E.A. Zvereva, M.I. Stratan, Y.A. Ovchenkov, V.B. Nalbandyan, J.Y. Lin, E.L. Vavilova, M.F. Iakovleva, M. Abdel-Hafiez, A.V. Silhanek, X.-J. Chen, A. Stroppa, S. Picozzi, H.O. Jeschke, R. Valentí, A.N. Vasiliev, Phys. Rev. B 92, 144401 (2015)ADSGoogle Scholar
  29. 29.
    S. Bhagat, M. Spano, J. Lloyd, Solid State Commun. 38(4), 261 (1981)ADSGoogle Scholar
  30. 30.
    A. Ashoka, K.S. Bhagyashree, S.V. Bhat. arXiv:1809.07635v3 (to be published)
  31. 31.
    A. Abragam, The Principles of Nuclear Magnetic Resonance (Clarendon Press, Oxford, 2006)Google Scholar
  32. 32.
    J.P. Joshi, R. Gupta, A.K. Sood, S.V. Bhat, A.R. Raju, C.N.R. Rao, Phys. Rev. B 65, 024410 (2001)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • K. S. Bhagyashree
    • 1
    Email author
  • Lora Rita Goveas
    • 2
  • S. V. Bhat
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.St. Joseph’s College (Autonomous)BangaloreIndia

Personalised recommendations