Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 7, pp 895–902 | Cite as

Substituent Influences on the NMR Signal Amplification of Ir Complexes with Heterocyclic Carbene Ligands

  • Sara Hadjiali
  • Roman Savka
  • Markus Plaumann
  • Ute Bommerich
  • Sarah Bothe
  • Torsten Gutmann
  • Tomasz Ratajczyk
  • Johannes Bernarding
  • Hans-Heinrich Limbach
  • Herbert Plenio
  • Gerd BuntkowskyEmail author
Original Paper
  • 276 Downloads

Abstract

A number of Ir–N-heterocyclic carbene (Ir–NHC) complexes with asymmetric N-heterocyclic carbene (NHC) ligands have been prepared and examined for signal amplification by reversible exchange (SABRE). Pyridine was chosen as model compound for hyperpolarization experiments. This substrate was examined in a solvent mixture using several Ir–NHC complexes, which differ in their NHC ligands. The SABRE polarization was created at 6 mT and the 1H nuclear magnetic resonance signals were detected at 7 T. We show that asymmetric NHC ligands, because of their favorable chemistry, can adapt the SABRE active complexes to different chemical scenarios.

Notes

Acknowledgements

GB and SH gratefully acknowledge financial support by the project iNAPO by the Hessen State Ministry of Higher Education, Research and the Arts. This work was supported by the Deutsche Forschungsgemeinschaft under contracts BE 1824/12-1 and BU-911-22-1. TR appreciates financial support from the Polish National Science Centre (UMO-2016/21/B/ST4/02162).

Supplementary material

723_2019_1115_MOESM1_ESM.docx (392 kb)
Supplementary file1 (DOCX 392 kb)

References

  1. 1.
    A.J. Arduengo, R.L. Harlow, M. Kline, J. Am. Chem. Soc. 113, 361–363 (1991)CrossRefGoogle Scholar
  2. 2.
    W.A. Herrmann, M. Elison, J. Fischer, C. Kocher, G.R.J. Artus, Angew. Chem. 34, 2371–2374 (1995)CrossRefGoogle Scholar
  3. 3.
    W.A. Herrmann, Angew. Chem. 41, 1290–1309 (2002)CrossRefGoogle Scholar
  4. 4.
    F. Godoy, C. Segarra, M. Poyatos, E. Peris, Organometallics 30, 684–688 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Furstner, A. Leitner, Synlett 2001, 290–292 (2001)CrossRefGoogle Scholar
  6. 6.
    S.R. Chemler, D. Trauner, S.J. Danishefsky, Angew. Chem. 40, 4544–4568 (2001)CrossRefGoogle Scholar
  7. 7.
    H.M. Lee, D.C. Smith, Z.J. He, E.D. Stevens, C.S. Yi, S.P. Nolan, Organometallics 20, 794–797 (2001)CrossRefGoogle Scholar
  8. 8.
    L.D. Vazquez-Serrano, B.T. Owens, J.M. Buriak, Inorg. Chim. Acta 359, 2786–2797 (2006)CrossRefGoogle Scholar
  9. 9.
    R.H. Grubbs, Angew. Chem. 45, 3760–3765 (2006)CrossRefGoogle Scholar
  10. 10.
    L.H. Peeck, R.D. Savka, H. Plenio, Chem-Eur J 18, 12845–12853 (2012)CrossRefGoogle Scholar
  11. 11.
    V. Thiel, M. Hendann, K.J. Wannowius, H. Plenio, J. Am. Chem. Soc. 134, 1104–1114 (2012)CrossRefGoogle Scholar
  12. 12.
    S.L. Balof, S.J. P'Pool, N.J. Berger, E.J. Valente, A.M. Shiller, H.J. Schanz, Dalton T 42, 5791–5799 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Monge-Marcet, R. Pleixats, X. Cattoen, M.W.C. Man, J. Mol. Catal. A 357, 59–66 (2012)CrossRefGoogle Scholar
  14. 14.
    R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. Lopez-Serrano, D.C. Williamson, Science 323, 1708–1711 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Cowley, R.W. Adams, K.D. Atkinson, M.C.R. Cockett, S.B. Duckett, G.G.R. Green, J.A.B. Lohman, R. Kerssebaum, D. Kilgour, R.E. Mewis, J. Am. Chem. Soc. 133, 6134–6137 (2011)CrossRefGoogle Scholar
  16. 16.
    A.N. Pravdivtsev, K.L. Ivanov, A.V. Yurkovskaya, P.A. Petrov, H.H. Limbach, R. Kaptein, H.M. Vieth, J. Magn. Reson. 261, 73–82 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Rayner, S.B. Duckett, Angew. Chem. 57, 6742–6753 (2018)CrossRefGoogle Scholar
  18. 18.
    T. Ratajczyk, T. Gutmann, P. Bernatowicz, G. Buntkowsky, J. Frydel, B. Fedorczyk, Chem-Eur J 21, 12616–12619 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Gloggler, R. Muller, J. Colell, M. Emondts, M. Dabrowski, B. Blumich, S. Appelt, Phys. Chem. Chem. Phys. 13, 13759–13764 (2011)CrossRefGoogle Scholar
  20. 20.
    A.M. Olaru, M.J. Burns, G.G.R. Green, S.B. Duckett, Chem. Sci. 8, 2257–2266 (2017)CrossRefGoogle Scholar
  21. 21.
    L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, R.G. Griffin, Phys. Rev. Lett. 71, 3561–3564 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    S. Bothe et al. J. Phys. Chem. C 122, 11422–11432 (2018)CrossRefGoogle Scholar
  23. 23.
    Y. Matsuki et al. Angew. Chem. 48, 4996–5000 (2009)CrossRefGoogle Scholar
  24. 24.
    M. Brodrecht, B. Kumari, H. Breitzke, T. Gutmann, G. Buntkowsky, Z. Phys. Chem. 232, 1127–1146 (2018)CrossRefGoogle Scholar
  25. 25.
    Q.Z. Ni, E. Daviso, T.V. Can, E. Markhasin, S.K. Jawla, T.M. Swager, R.J. Temkin, J. Herzfeld, R.G. Griffin, Acc. Chem. Res. 46, 1933–1941 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Werner, A. Heil, N. Rothermel, H. Breitzke, P.B. Groszewicz, A.S. Thankamony, T. Gutmann, G. Buntkowsky, Solid State Nucl. Magn. Reson. 72, 73–78 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Corzilius, Phys. Chem. Chem. Phys. 18, 29643–29643 (2016)CrossRefGoogle Scholar
  28. 28.
    T.C. Eisenschmid, R.U. Kirss, P.P. Deutsch, S.I. Hommeltoft, R. Eisenberg, J. Bargon, R.G. Lawler, A.L. Balch, J. Am. Chem. Soc. 109, 8089–8091 (1987)CrossRefGoogle Scholar
  29. 29.
    J. Barkemeyer, M. Haake, J. Bargon, J. Am. Chem. Soc. 117, 2927–2928 (1995)CrossRefGoogle Scholar
  30. 30.
    M. Plaumann, U. Bommerich, T. Trantzschel, D. Lego, S. Dillenberger, G. Sauer, J. Bargon, G. Buntkowsky, J. Bernarding, Chem-Eur J 19, 6334–6339 (2013)CrossRefGoogle Scholar
  31. 31.
    P. Nikolaou, B.M. Goodson, E.Y. Chekmenev, Chem-Eur J 21, 3156–3166 (2015)CrossRefGoogle Scholar
  32. 32.
    K.V. Kovtunov, I.E. Beck, V.I. Bukhtiyarov, I.V. Koptyug, Angew. Chem. 47, 1492–1495 (2008)CrossRefGoogle Scholar
  33. 33.
    A.A. Lysova, I.V. Koptyug, Chem. Soc. Rev. 39, 4585–4601 (2010)CrossRefGoogle Scholar
  34. 34.
    V.V. Zhivonitko, V.V. Telkki, K. Chernichenko, T. Repo, M. Leskela, V. Sumerin, I.V. Koptyug, J. Am. Chem. Soc. 136, 598–601 (2014)CrossRefGoogle Scholar
  35. 35.
    G. Sauer, D. Nasu, D. Tietze, T. Gutmann, S. Englert, O. Avrutina, H. Kolmar, G. Buntkowsky, Angew. Chem. 53, 12941–12945 (2014)CrossRefGoogle Scholar
  36. 36.
    V.V. Zhivonitko, K. Sorochkina, K. Chernichenko, B. Kotai, T. Foldes, I. Papai, V.V. Telkki, T. Repo, I. Koptyug, Phys. Chem. Chem. Phys. 18, 27784–27795 (2016)CrossRefGoogle Scholar
  37. 37.
    A.S. Kiryutin, G. Sauer, A.V. Yurkovskaya, H.H. Limbach, K.L. Ivanov, G. Buntkowsky, J. Phys. Chem. C 121, 9879–9888 (2017)CrossRefGoogle Scholar
  38. 38.
    A.J. Ruddlesden, R.E. Mewis, G.G.R. Green, A.C. Whitwood, S.B. Duckett, Organometallics 34, 2997–3006 (2015)CrossRefGoogle Scholar
  39. 39.
    C.M. Wong, M. Fekete, R. Nelson-Forde, M.R.D. Gatus, P.J. Rayner, A.C. Whitwood, S.B. Duckett, B.A. Messerle, Catal Sci Technol 8, 4925–4933 (2018)CrossRefGoogle Scholar
  40. 40.
    F. Shi, A.M. Coffey, K.W. Waddell, E.Y. Chekmenev, B.M. Goodson, Angew. Chem. 53, 7495–7498 (2014)CrossRefGoogle Scholar
  41. 41.
    A.S. Kiryutin, A.N. Pravdivtsev, K.L. Ivanov, Y.A. Grishin, H.M. Vieth, A.V. Yurkovskaya, J. Magn. Reson. 263, 79–91 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    R. Savka, H. Plenio, Dalton T 44, 891–893 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Sara Hadjiali
    • 1
  • Roman Savka
    • 2
  • Markus Plaumann
    • 3
  • Ute Bommerich
    • 3
  • Sarah Bothe
    • 1
  • Torsten Gutmann
    • 1
  • Tomasz Ratajczyk
    • 4
  • Johannes Bernarding
    • 3
  • Hans-Heinrich Limbach
    • 5
  • Herbert Plenio
    • 2
  • Gerd Buntkowsky
    • 1
    Email author
  1. 1.Institute of Physical ChemistryTechnical University DarmstadtDarmstadtGermany
  2. 2.Institute of Inorganic ChemistryTechnical University DarmstadtDarmstadtGermany
  3. 3.Medical Faculty, Institute for Biometrics and Medical InformaticsOtto-Von-Guericke University MagdeburgMagdeburgGermany
  4. 4.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland
  5. 5.Institute of ChemistryFreie Universität BerlinBerlinGermany

Personalised recommendations