Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 7, pp 883–893 | Cite as

ESEEM Reveals Bound Substrate Histidine in the ABC Transporter HisQMP2

  • Nikolay Isaev
  • Johanna Heuveling
  • Nikita Ivanisenko
  • Erwin Schneider
  • Heinz-Jürgen SteinhoffEmail author
Original Paper
  • 141 Downloads

Abstract

Localization of substrates in membrane proteins is an important but challenging task. In this paper, we show that deuterium electron spin echo envelope modulation spectroscopy (2H ESEEM) combined with site-directed spin labeling is a powerful tool to localize the substrate, histidine-d5, in the ABC transporter HisQMP2. Based on a homology model and spin label rotamer analyses, we calculated 2H ESEEM spectra for eight possible labeling positions close to the putative substrate-binding site. Experimental 2H ESEEM spectra were determined with spin labels bound either at position 169 of HisM, for which a detectable 2H ESEEM signal was calculated, or with a spin label bound at position 54 of HisQ as a negative control. The agreement between the calculated and experimental ESEEM spectra provides strong evidence for the histidine located in a binding site primarily liganded by residues of HisM as proposed by the homology model.

Notes

Acknowledgements

We thank Heidi Landmesser (Humboldt Universität zu Berlin) for excellent technical assistance. This work was supported by Alexander von Humboldt Foundation and DFG (STE640/10 to H.J.S. and SCHN274/16-1 to E.S.). Computational modeling was funded by the Russian Foundation for Basic Research grant 17-54-49004.

References

  1. 1.
    R. Santos, O. Ursu, A. Gaulton, A.P. Bento, R.S. Donadi, C.G. Bologa, A. Karlsson, B. Al-Lazikani, A. Hersey, T.I. Oprea, J.P. Overington, Nat. Rev. Drug Discov. 16, 19 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Caffrey, Acta Crystallogr. Sect. FStructural Biol. Commun. 71, 3 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Cheng, Cell 161, 450 (2015)CrossRefGoogle Scholar
  4. 4.
    B. Liang, L.K. Tamm, Nat. Struct. Mol. Biol. 23, 468 (2016)CrossRefGoogle Scholar
  5. 5.
    N. Cox, A. Nalepa, M.-E. Pandelia, W. Lubitz, A. Savitsky, Methods Enzymol. 563, 211 (2015)CrossRefGoogle Scholar
  6. 6.
    G.E. Cutsail, J. Telser, B.M. Hoffman, Biochim. Biophys. Acta Mol. Cell Res. 1853, 1370 (2015)CrossRefGoogle Scholar
  7. 7.
    J.P. Klare, H.-J. Steinhoff, Photosynth. Res. 102, 377 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Altenbach, S.L. Flitsch, H.G. Khorana, W.L. Hubbell, Biochemistry 28, 7806 (1989)CrossRefGoogle Scholar
  9. 9.
    J.P. Klare, Biol. Chem. 394, 1281 (2013)CrossRefGoogle Scholar
  10. 10.
    M.T. Ge, S.B. Rananavare, J.H. Freed, Biochim. Biophys. Acta 1036, 228 (1990)CrossRefGoogle Scholar
  11. 11.
    J.P. Gölz, S. Bockelmann, K. Mayer, H.J. Steinhoff, H. Wieczorek, M. Huss, J.P. Klare, D. Menche, ChemMedChem 11, 420 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Joseph, A. Sikora, E. Bordignon, G. Jeschke, D.S. Cafiso, T.F. Prisner, Angew. Chemie Int. Ed. 54, 6196 (2015)CrossRefGoogle Scholar
  13. 13.
    M.M. Haugland, J.E. Lovett, E.A. Anderson, Chem. Soc. Rev. 47, 668 (2018)CrossRefGoogle Scholar
  14. 14.
    O. Krumkacheva, E. Bagryanskaya, Electron Paramagn. Reson. 25, 35 (2017)CrossRefGoogle Scholar
  15. 15.
    T.F. Cunningham, M.R. Putterman, A. Desai, W.S. Horne, S. Saxena, Angew. Chemie Int. Ed. 54, 6330 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Feintuch, G. Otting, D. Goldfarb, Methods Enzymol. 563, 415 (2015)CrossRefGoogle Scholar
  17. 17.
    Z. Wu, A. Feintuch, A. Collauto, L.A. Adams, L. Aurelio, B. Graham, G. Otting, D. Goldfarb, J. Phys. Chem. Lett. 8, 5277 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Gmeiner, D. Klose, E. Mileo, V. Belle, S.R.A. Marque, G. Dorn, F.H.T. Allain, B. Guigliarelli, G. Jeschke, M. Yulikov, J. Phys. Chem. Lett. 8, 4852 (2017)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Y. Deligiannakis, M. Louloudi, N. Hadjiliadis, Coord. Chem. Rev. 204, 1 (2000)CrossRefGoogle Scholar
  21. 21.
    S. Van Doorslaer, E. Vinck, Phys. Chem. Chem. Phys. 9, 4620 (2007)CrossRefGoogle Scholar
  22. 22.
    S.A. Dzuba, D. Marsh, Electron Paramagn. Reson. 24, 102 (2015)CrossRefGoogle Scholar
  23. 23.
    J.A. Cieslak, P.J. Focia, A. Gross, Biochemistry 49, 1486 (2010)CrossRefGoogle Scholar
  24. 24.
    E.S. Salnikov, D.A. Erilov, A.D. Milov, Y.D. Tsvetkov, C. Peggion, F. Formaggio, C. Toniolo, J. Raap, S.A. Dzuba, Biophys. J. 91, 1532 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    R. Carmieli, N. Papo, H. Zimmermann, A. Potapov, Y. Shai, D. Goldfarb, Biophys. J. 90, 492 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    K.A. Åhrling, M.C.W. Evans, J.H.A. Nugent, R.J. Ball, R.J. Pace, Biochemistry 45, 7069 (2006)CrossRefGoogle Scholar
  27. 27.
    A. Volkov, C. Dockter, Y. Polyhach, H. Paulsen, G. Jeschke, J. Phys. Chem. Lett. 1, 663 (2010)CrossRefGoogle Scholar
  28. 28.
    L. Urban, H.-J. Steinhoff, Mol. Phys. 111, 2873 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    D.A. Erilov, R. Bartucci, R. Guzzi, A.A. Shubin, A.G. Maryasov, D. Marsh, S.A. Dzuba, L. Sportelli, J. Phys. Chem. B 109, 12003 (2005)CrossRefGoogle Scholar
  30. 30.
    A.D. Milov, R.I. Samoilova, A.A. Shubin, Y.A. Grishin, S.A. Dzuba, Appl. Magn. Reson. 35, 73 (2008)CrossRefGoogle Scholar
  31. 31.
    K.B. Konov, N.P. Isaev, S.A. Dzuba, Mol. Phys. 111, 2882 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    L. Bottorf, S. Rafferty, I.D. Sahu, R.M. McCarrick, G.A. Lorigan, J. Phys. Chem. B 121, 2961 (2017)CrossRefGoogle Scholar
  33. 33.
    G.F. Ames, K. Nikaido, I.X. Wang, P.Q. Liu, C.E. Liu, C. Hu, J. Bioenerg. Biomembr. 33, 79 (2001)CrossRefGoogle Scholar
  34. 34.
    J. Yu, J. Ge, J. Heuveling, E. Schneider, M. Yang, Proc. Natl. Acad. Sci. USA 112, 5243 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F. Kiefer, T.G. Cassarino, M. Bertoni, L. Bordoli, T. Schwede, Nucleic Acids Res. 42, W252 (2014)CrossRefGoogle Scholar
  36. 36.
    G. Hagelueken, R. Ward, J.H. Naismith, O. Schiemann, Appl. Magn. Reson. 42, 377 (2012)CrossRefGoogle Scholar
  37. 37.
    N.R. Coordinators, Nucleic Acids Res. 45, D12 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Sippach, D. Weidlich, D. Klose, C. Abé, J. Klare, E. Schneider, H.J. Steinhoff, Biochim. Biophys. Acta Biomembr. 1838, 1760 (2014)CrossRefGoogle Scholar
  39. 39.
    T. Eitinger, D.A. Rodionov, M. Grote, E. Schneider, F.E.M.S. Microbiol, Rev. 35, 3 (2011)Google Scholar
  40. 40.
    K.P. Locher, Nat. Struct. Mol. Biol. 23, 487 (2016)CrossRefGoogle Scholar
  41. 41.
    V. Eckey, D. Weidlich, H. Landmesser, U. Bergmann, E. Schneider, J. Bacteriol. 192, 2150 (2010)CrossRefGoogle Scholar
  42. 42.
    F. Sievers, A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J.D. Thompson, D.G. Higgins, Mol. Syst. Biol. 7, 539 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Heuveling, H. Landmesser, E. Schneider, J. Bacteriol. 201:e00521–18 (2019).  https://doi.org/10.1128/jb.00521 Google Scholar
  44. 44.
    A.V. Astashkin, S.A. Dikanov, Y.D. Tsvetkov, J. Struct. Chem. 25, 45 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Voevodsky Institute of Chemical Kinetics and Combustion SB RASNovosibirskRussia
  2. 2.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany
  3. 3.Institut für Biologie/Physiologie der MikroorganismenHumboldt Universität zu BerlinBerlinGermany
  4. 4.The Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
  5. 5.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations