Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 6, pp 819–833 | Cite as

Site Symmetries of Cerium Ions in BaWO4 Single Crystals Codoped with Sodium Ions

  • G. LeniecEmail author
  • S. M. Kaczmarek
  • T. Bodziony
  • H. Fuks
  • Z. Kowalski
  • M. Berkowski
  • M. Głowacki
Original Paper

Abstract

Barium tungstate crystals are an interesting and relatively new medium for stimulated Raman scattering for applications in Raman shifters of laser radiation. Good quality BaWO4 crystals can be grown by Czochralski technique and doped with rare-earth ions. Doping with trivalent ions requires charge compensation which may be provided, for example, by structural defects or proper codoping with alkaline metal ions. Crystals possess scheelite-like structure with the space group I41/a. Results of the electron paramagnetic resonance (EPR) studies of BaWO4:Ce crystals and crystals codoped with Na are presented in this paper. EPR study was performed in the low temperature range 3 K < T < 50 K for all three planes of single crystals. The EPR spectra were attributed to cerium ions with a fictitious spin S = 1/2. The spin Hamilton (SH) parameters were determined. The values of SH parameters indicate the occurrence of paramagnetic centers in axial and low symmetry. The number of observed EPR lines depends on the selected plane. Based on the roadmap, we have found that one center with axial symmetry and at least two centers with low symmetry appear. The linewidth, ∆B, vs temperature dependence revealed increasing exponential tendency with increasing temperature. It shows 1 phonon at the lower temperatures and Raman + Orbach effect at the higher temperatures. Exponential change of the ΔB could be connected with the spin–lattice relaxation processes involving excited states of Ce3+ ions.

References

  1. 1.
    V.B. Mikhailik, H. Kraus, Phys. Status Solidi B 247, 1583 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    P. Du, L.K. Bharat, X.Y. Guan, J.S. Yu, J. Appl. Phys. 117, 083112 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    P. Du, L.K. Bharat, J.S. Yu, J. Alloy. Compd. 633, 37 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Cerný, H. Jelínková, T.T. Basiev, P.G. Zverev, IEEE J. Quantum Electronics 38, 1471 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    R. Lacomba-Perales, J. Ruis-Fuertes, D. Errandonea, D. Martinez-Garcia, A. Segura, EPL 83, 370002 (2008)CrossRefGoogle Scholar
  6. 6.
    K.V. Dabre, S.J. Dhoble, J. Lochab, J. Luminescence 149, 348 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D. Wlodarczyk, M. Berkowski, M. Głowacki, S. Kaczmarek, Z. Kowalski, L.-I. Bulyk, M. Brik, A. Wittlin, H. Przybylinska, Ya. Zhydachevskii, A. Suchocki, in Proceedings of the 5th International Conference on Oxide Materials for Electronic Engineering—fabrication, properties and application (Lviv, Ukraine, 29 May–02 June 2017), p. 138Google Scholar
  8. 8.
    I.S. Voronina, L.I. Ivleva, T.T. Basiev, P.G. Zverev, N.M. Polozkov, J. Optoelectron. Adv. Mater. 5(4), 887 (2003)Google Scholar
  9. 9.
    S.M. Kaczmarek, H. Fuks, G. Leniec, T. Skibiński, J. Hanuza, L. Macalik, A. Majchrowski, J. Spectrosc. Dyn. 3, 18 (2013)Google Scholar
  10. 10.
    G. Leniec, L. Macalik, S.M. Kaczmarek, T. Skibiński, J. Hanuza, J. Mater. Res. 27(23), 2973 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    G. Leniec, T. Skibiński, S.M. Kaczmarek, P. Iwanowski, M. Berkowski, Central Eur. J. Phys. 10(2), 500 (2012)ADSGoogle Scholar
  12. 12.
    S.M. Kaczmarek, L. Macalik, H. Fuks, G. Leniec, T. Skibiński, J. Hanuza, Central Eur. J. Phys. 10(2), 492 (2012)ADSGoogle Scholar
  13. 13.
    H. Fuks, T. Skibiński, S.M. Kaczmarek, J. Hanuza, G. Leniec, K. Hermanowicz, M. Mączka, M. Ptak, J. Alloys Compd. 585, 722 (2014)CrossRefGoogle Scholar
  14. 14.
    H.-M. Zhang, S.-Y. Wu, P. Xu, L.-L. Li, S.-X. Zhang, Eur. Phys. J. Appl. Phys. 50, 30901 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C.C. Ding, S.Y. Wu, M.Q. Kuang, Z.H. Zhang, B.H. Teng, M.H. Wu, Phys. Chem. Miner. 41, 767 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    C.C. Ding, S.Y. Wu, M.Q. Kuang, Y.K. Cheng, L.J. Zhang, Phys. B 451, 80 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    C.C. Ding, S.Y. Wu, Q.S. Zhu, G.L. Li, Z.H. Zhang, Y.Q. Xu, Mol. Phys. 113: 12, 1478 (2015)CrossRefGoogle Scholar
  18. 18.
    W. Shao-Yi, D. Hui-Ning, Spectrochim. Acta Part A 60, 1991 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    G. Born, A. Hofstaetter, A. Scharmann, Phys. Status Solidi (b) 33(1), 255 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    M.J. Mombourquette, J.A. Weil, D.G. McGavin, EPR–NMR User’s Manual (Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada, 1999)Google Scholar
  21. 21.
    H. Zhang, T. Liu, Q. Zhang, X. Wang, X. Guo, M. Song, J. Yin, Nucl. Instrum. Methods B 267, 1056 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H. Zhang, T. Liu, Q. Zhang, X. Wang, J. Yin, M. Song, X. Guo, J. Phys. Chem. Solids 69, 1815 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M. C. Oliveira, L. Gracia, I. C. Nogueira, M. F. do Carmo Gurgel, J. M. R. Mercury, E. Longo, J. Andrés, Ceramics Int. 42, 10913 (2016)Google Scholar
  24. 24.
    X.S. Lin, J.L. Chen, N.F. Zhuang, B. Zhao, J.Z. Chen, J. Cryst. Growth 277, 223 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, Acta Cryst. A32, 751 (1976)CrossRefGoogle Scholar
  26. 26.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 1970). ISBN: 978-0199651528Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • G. Leniec
    • 1
    Email author
  • S. M. Kaczmarek
    • 1
  • T. Bodziony
    • 1
  • H. Fuks
    • 1
  • Z. Kowalski
    • 1
  • M. Berkowski
    • 2
  • M. Głowacki
    • 2
  1. 1.Institute of Physics, Faculty of Mechanical Engineering and MechatronicsWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations