Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 1–16 | Cite as

Nitroxide Spin Labels—Magnetic Parameters and Hydrogen-Bond Formation: A High-Field EPR and EDNMR Study

  • Anna Nalepa
  • Klaus Möbius
  • Martin Plato
  • Wolfgang Lubitz
  • Anton SavitskyEmail author
Original Paper


In this work, we report on a detailed high-field EPR investigation of magnetic parameters of deuterated nitroxide radicals dissolved in deuterated frozen solvents of polar or unpolar, protic or aprotic character including ortho-terphenyl, methanol, propanol, glycerol, aniline, phenol, and water. The analysis of the high-resolution W-band (95 GHz) pulsed ELDOR-detected NMR (EDNMR) and 244 GHz cw EPR spectra yielded precise electron Zeeman, gxx, 14N hyperfine, Azz, and 14N quadrupole, Pzz, tensor components, which are most sensitive probes for the microenvironment of dissolved nitroxide radicals. Remarkable changes in the solvation networks were found in the various matrices. The solvent-dependent magnetic parameters of the nitroxide are discussed on the basis of previous semi-empirical and DFT quantum chemical calculations in an attempt to adequately model the nitroxide–matrix interactions. The obtained results demonstrate that the principal values of all the magnetic interaction parameters primarily depend on the nitroxide hydrogen-bond situation and the type of hydrogen-bond donor group of the solvent. The solvent bulk polarity, as described by the static dielectric constant, is of minor importance.



We thank Yuri Grishin (Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia) for enduring technical support and Herbert Zimmermann (Max-Planck Institute for Medical Research, Heidelberg) for providing the deuterated nitroxide radical. We thank Gudrun Klihm (Max Planck Institute for Chemical Energy Conversion, Mülheim) for technical assistance with the 244 GHz EPR spectrometer. This work was supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft and the Max-Planck-Gesellschaft. K.M. and M.P. acknowledge sustaining support by the Freie Universität Berlin.


  1. 1.
    H.J. Steinhoff, A. Savitsky, C. Wegener, M. Pfeiffer, M. Plato, K. Möbius, Biochim. Biophys. Acta 1457, 253–262 (2000)CrossRefGoogle Scholar
  2. 2.
    E. Bordignon, H. Brutlach, L. Urban, K. Hideg, A. Savitsky, A. Schnegg, P. Gast, M. Engelhard, E.J.J. Groenen, K. Möbius, H.J. Steinhoff, Appl. Magn. Reson. 37, 391–403 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Plato, H.J. Steinhoff, C. Wegener, J.T. Torring, A. Savitsky, K. Möbius, Mol. Phys. 100, 3711–3721 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    A. Savitsky, A.A. Dubinskii, M. Plato, Y.A. Grishin, H. Zimmermann, K. Möbius, J. Phys. Chem. B 112, 9079–9090 (2008)CrossRefGoogle Scholar
  5. 5.
    P. Gast, R.T.L. Herbonnet, J. Klare, A. Nalepa, C. Rickert, D. Stellinga, L. Urban, K. Möbius, A. Savitsky, H.J. Steinhoff, E.J.J. Groenen, Phys. Chem. Chem. Phys. 16, 15910–15916 (2014)CrossRefGoogle Scholar
  6. 6.
    T. Kawamura, S. Matsunam, T. Yonezawa, Bull. Chem. Soc. Jpn. 40, 1111–1115 (1967)CrossRefGoogle Scholar
  7. 7.
    O.H. Griffith, P.J. Dehlinger, S.P. Van, J. Membr. Biol. 15, 159–192 (1974)CrossRefGoogle Scholar
  8. 8.
    B.R. Knauer, J.J. Napier, J. Am. Chem. Soc. 98, 4395–4400 (1976)CrossRefGoogle Scholar
  9. 9.
    A.H. Reddoch, S. Konishi, J. Chem. Phys. 70, 2121–2130 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    N.A. Sysoeva, A.U. Stepanyants, A.L. Buchachenko, J. Struct. Chem. 9, 248–249 (1968)CrossRefGoogle Scholar
  11. 11.
    L. Morishima, K. Endo, T. Yonezawa, Chem. Phys. Lett. 9, 143–146 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    I. Morishima, K. Endo, T. Yonezawa, J. Am. Chem. Soc. 93, 2048–2050 (1971)CrossRefGoogle Scholar
  13. 13.
    I. Morishima, K. Endo, T. Yonezawa, J. Chem. Phys. 58, 3146–3154 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    A.S. Kabankin, G.M. Zhidomirov, A.L. Buchachenko, J. Magn. Reson. 9, 199–204 (1973)ADSGoogle Scholar
  15. 15.
    I. Morishima, K. Ishihara, K. Tomishima, T. Inubushi, T. Yonezawa, J. Am. Chem. Soc. 97, 2749–2756 (1975)CrossRefGoogle Scholar
  16. 16.
    E. Dally, W. Müller-Warmuth, Ber. Bunsenges. Phys. Chem. 81, 1133–1137 (1977)CrossRefGoogle Scholar
  17. 17.
    K. Endo, I. Morishima, T. Yonezawa, J. Chem. Phys. 67, 4760–4767 (1977)ADSCrossRefGoogle Scholar
  18. 18.
    E. Dally, W. Müller-Warmuth, Ber. Bunsenges. Phys. Chem. 82, 792–798 (1978)CrossRefGoogle Scholar
  19. 19.
    U. Stark, W. Müller-Warmuth, Ber. Bunsenges. Phys. Chem. 94, 168–172 (1990)CrossRefGoogle Scholar
  20. 20.
    I.G. Shenderovich, Z. Kecki, I. Wawer, G.S. Denisov, Spectrosc. Lett. 30, 1515–1523 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    A. Nalepa, K. Möbius, W. Lubitz, A. Savitsky, J. Magn. Reson. 242, 203–213 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    L.N. Ikryannikova, L.Y. Ustynyuk, A.N. Tikhonov, J. Phys. Chem. A 108, 4759–4768 (2004)CrossRefGoogle Scholar
  23. 23.
    L.N. Ikryannikova, L.Y. Ustynyuk, A.N. Tikhonov, Magn. Reson. Chem. 48, 337–349 (2010)Google Scholar
  24. 24.
    S. Sinnecker, M. Flores, W. Lubitz, Phys. Chem. Chem. Phys. 8, 5659–5670 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Sinnecker, E. Reijerse, F. Neese, W. Lubitz, J. Am. Chem. Soc. 126, 3280–3290 (2004)CrossRefGoogle Scholar
  26. 26.
    K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States (Royal Society of Chemistry, London, 2009)Google Scholar
  27. 27.
    K. Möbius, A. Savitsky, A. Schnegg, M. Plato, M. Fuchs, Phys. Chem. Chem. Phys. 7, 19–42 (2005)CrossRefGoogle Scholar
  28. 28.
    E. Reijerse, P.P. Schmidt, G. Klihm, W. Lubitz, Appl. Magn. Reson. 31, 611–626 (2007)CrossRefGoogle Scholar
  29. 29.
    A. Stesmans, G. Van Gorp, Phys. Lett. A 139, 95–98 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    O. Burghaus, M. Rohrer, T. Gotzinger, M. Plato, K. Möbius, Meas. Sci. Technol. 3, 765–774 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    M. Pavone, A. Sillanpää, P. Cimino, O. Crescenzi, V. Barone, J. Phys. Chem. B 110, 16189–16192 (2006)CrossRefGoogle Scholar
  32. 32.
    B. Dzikovski, D. Tipikin, J. Freed, J. Phys. Chem. B 116, 6694–6706 (2012)CrossRefGoogle Scholar
  33. 33.
    T.I. Smirnova, T.G. Chadwick, M.A. Voinov, O. Poluektov, J. van Tol, A. Ozarowski, G. Schaaf, M.M. Ryan, V.A. Bankaitis, Biophys. J. 92, 3686–3695 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    I.J. Brass, A.T. Bullock, J. Chem. Soc. Faraday Trans. I 74, 1556–1561 (1978)CrossRefGoogle Scholar
  35. 35.
    A.T. Bullock, C.B. Howard, J. Chem. Soc. Faraday Trans. I 77, 137–140 (1981)CrossRefGoogle Scholar
  36. 36.
    T.J. Bruno, P.D.N. Svoronos (eds.), CRC Handbook of Basic Tables for Chemical Analysis, 3rd edn. (CRC Press, Boca Raton, 2010)Google Scholar
  37. 37.
    D. Marsh, J. Phys. Chem. A 119, 919–921 (2015)CrossRefGoogle Scholar
  38. 38.
    R. Owenius, M. Engstrom, M. Lindgren, M. Huber, J. Phys. Chem. A 105, 10967–10977 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Chemical Energy ConversionMülheim an der RuhrGermany
  2. 2.Department of PhysicsFree University BerlinBerlinGermany
  3. 3.Faculty of PhysicsTechnical University DortmundDortmundGermany

Personalised recommendations