Applied Magnetic Resonance

, Volume 49, Issue 12, pp 1385–1395 | Cite as

Nucleotide Spin Labeling for ESR Spectroscopy of ATP-Binding Proteins

  • Alise R. Muok
  • Teck Khiang Chua
  • Henry Le
  • Brian R. CraneEmail author
Original Paper


Site-directed spin labeling of proteins by chemical modification of engineered cysteine residues with the molecule MTSSL (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl methanethiosulfonate) has been an invaluable tool for conducting double electron electron resonance (DEER) spectroscopy experiments. However, this method is generally limited to recombinant proteins with a limited number of reactive Cys residues that when modified will not impair protein function. Here, we present a method that allows for spin labeling of protein-nucleotide-binding sites by adenosine diphosphate (ADP) modified with a nitroxide moiety on the β-phosphate (ADP-β-S-SL). The synthesis of this ADP analog is straightforward and isolation of pure product is readily achieved on a standard reverse-phase high-performance liquid chromatography (HPLC) system. Furthermore, analyses of isolated ADP-β-S-SL by LC–mass spectrometry confirm that the molecule is very stable under ambient conditions. The crystal structure of ADP-β-S-SL bound to the ATP pocket of the histidine kinase CheA reveals specific targeting of the probe, whose nitroxide moiety is mobile on the protein surface. Continuous wave and pulsed-ESR measurements demonstrate the capability of ADP-β-S-SL to report on active site environment and provide reliable DEER distance constraints.



This work supported by a National Science Foundation (NSF) Graduate Research Fellowship to ARM (2014155468) and a National Institutes of Health grant to BRC (R35GM122535). We are grateful to the National Biomedical Center for Advanced ESR Technology supported through NIH grant P41GM103521 to J.R. Freed and NE-CAT of the Advanced Photon Source at Argonne National Labs (NIH Grant P41GM103403) for access to X-ray data collection facilities. Coordinates were deposited in the Protein Data Bank under ID 6MI6. We thank Siddharth Chandrasekaran and Daniyal Tariq for assistance with cw-ESR experiments, Madhur Srivastava for help with data processing and Peter Borbat for helpful discussions.


  1. 1.
    G. Jeschke, Interpretation of dipolar EPR data in terms of protein structure. Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences, ed. by C.R. Timmel, J.R. Harmer (Springer, Berlin, 2013), pp. 83–120Google Scholar
  2. 2.
    J.P. Klare, Biol. Chem. 394, 1281–1300 (2013)CrossRefGoogle Scholar
  3. 3.
    P. Borbat, J. Freed, eMagRes 6, 465–493 (2017). CrossRefGoogle Scholar
  4. 4.
    W.L. Hubbell, A. Gross, R. Langen, M.A. Lietzow, Curr. Opin. Struct. Biol. 8, 649–656 (1998)CrossRefGoogle Scholar
  5. 5.
    C. Gmeiner, D. Klose, E. Mileo, V. Belle, S. Marque, G. Dorn, F. Allain, B. Guigliarelli, G. Jeschke, M. Yulikov, J. Phys. Chem. Lett. 8, 4852–4857 (2017)CrossRefGoogle Scholar
  6. 6.
    C. Bertrand, E.M. Bruch, P. Demay-drouhard, R.M. Rasia, C. Policar, L.C. Tabares, J. Phys. Chem. Lett. 7, 1072–1076 (2016)CrossRefGoogle Scholar
  7. 7.
    M.J. Schmidt, J. Borbas, M. Drescher, D. Summerer, J. Am. Chem. Soc. 3, 1238–1241 (2014)CrossRefGoogle Scholar
  8. 8.
    M.R. Fleissner, E.M Brustad, T. Kaki, C. Attenbach, D. Cascio, F.B. Peters, K. Hides, S. Peuker, P.G. Schultz, W.L. Hubbell, Proc. Natl. Acad. USA 106, 21637–21642 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Fielding, M.G. Concilio, G. Heaven, M.A. Hollas, Molecules 19, 16998–17025 (2014)CrossRefGoogle Scholar
  10. 10.
    N.K. Kim, A. Murali, V. DeRose, Chem. Biol. 11, 939–948 (2004)CrossRefGoogle Scholar
  11. 11.
    G.P.G. Grant, P.Z. Qin, Nucleic Acids Res. 35, 1–8 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Delannoy, I.L. Urbatsch, G. Tombline, A.E. Senior, P.D. Vogel, Biochemistry 44, 14010–14019 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Haller, U. Hoffmann, T. Schanding, R.S. Goody, P.D. Vogel, J. Biol. Chem. 272, 30103–30107 (1997)CrossRefGoogle Scholar
  14. 14.
    J. Bhatnagar, P.P. Borbat, A.M. Pollard, A.M. Bilwes, J.H. Freed, B.R. Crane, Biochemistry 49, 3824–3841 (2010)CrossRefGoogle Scholar
  15. 15.
    A.K. Eaton, R.C. Stewart, Biochemistry 48, 6412–6422 (2010)CrossRefGoogle Scholar
  16. 16.
    A.M. Bilwes, C.M. Quezada, L.R. Croal, B.R. Crane, M.I. Simon, Nat. Struct. Biol. 8, 353–360 (2001)CrossRefGoogle Scholar
  17. 17.
    L. Lauinger, A. Diernfellner, S. Falk, M. Brunner, Nat. Commun. 5, 3598 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    K.S. Conrad, J.M. Hurley, J. Widom, C.S. Ringelburg, J.J. Loros, J.C. Dunlap, B.R. Crane. EMBO J. 35, 1707–1719 (2016)CrossRefGoogle Scholar
  19. 19.
    G.E. Bronnikov, S.D. Zakharov, Anal. Biochem. 131, 69–74 (1983)CrossRefGoogle Scholar
  20. 20.
    P.D. Adams, P.V. Afonine, R.W. Grosse-Kunstleve, R.J. Read, J.S. Richardson, D.C. Richardson, T.C. Terwilliger, Curr. Opin. Struct. Biol. 19, 566–572 (2009). CrossRefGoogle Scholar
  21. 21.
    P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan, Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501 (2010)CrossRefGoogle Scholar
  22. 22.
    P.P. Borbat, R.H. Crepeau, J.H. Freed, J. Magn. Reson. 167, 155–167 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    P.P. Borbat, H.S. Mchaourab, J.H. Freed, J. Am. Chem. Soc. 124, 5304–5314 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Srivastava, C.L. Anderson, J.H. Freed, IEEE Access. 4, 3862–3877 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Srivastava, J.H. Freed, J. Phys. Chem. Lett. 8, 5648–5655 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA

Personalised recommendations