Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 323–331 | Cite as

Spin Diagnostics of Local Polytypic Composition of Silicon Carbide with Submicron Spatial Resolution

  • A. N. AnisimovEmail author
  • S. S. Nagalyuk
  • M. V. Muzafarova
  • A. P. Bundakova
  • R. A. Babunts
  • V. A. Soltamov
  • E. N. Mokhov
  • P. G. Baranov
Original Paper
  • 60 Downloads

Abstract

A new diagnostic method for evaluation of the local polytypic composition of silicon carbide at room temperature is proposed using known and tabulated zero-field splitting values for spin color centers with S = 3/2 whose frequency parameters are in the megahertz range and depend on the specific polytype. The zero-field splitting values are recorded from the change in the photoluminescence in the near infrared, either under the optically detected magnetic resonance conditions or under the level anticrossing conditions of the spin centers. The proposed method can be used to identify silicon carbide known as carborundum in nature by recording optically induced radio frequency emission of spin color centers, including outer space.

Notes

Acknowledgements

This work was supported by the Russian Science Foundation under grant no. 16-42-01098; Russian Foundation for Basic Research under grant no. 16-02-00877-a and by the Program of the Presidium of the Russian Academy of Sciences. V.A.S. acknowledges support through a sponsorship provided by the Alexander von Humboldt (AvH) foundation fellowship.

References

  1. 1.
    P.G. Baranov, I.V. Il’in, E.N. Mokhov, M.V. Muzafarova, S.B. Orlinskii, J. Schmidt, JETP Lett. 82, 441 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Baranov, A.P. Bundakova, I.V. Borovykh, S.B. Orlinskii, R. Zondervan, J. Schmidt, JETP Lett. 86, 202 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van de Walle, D.D. Awschalom, Proc. Natl. Acad. Sci. USA 107, 8513 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D. DiVincenzo, Nat. Mater. 9, 468 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    P.G. Baranov, A.P. Bundakova, A.A. Soltamova, S.B. Orlinskii, I.V. Borovykh, R. Zondervan, R. Verberk, J. Schmidt, Phys. Rev. B. 83, 125203 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    D. Riedel, F. Fuchs, H. Kraus, S. Vath, A. Sperlich, V. Dyakonov, A. Soltamova, P. Baranov, V. Ilyin, G.V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    H. Kraus, V.A. Soltamov, F. Fuchs, D. Simin, A. Sperlich, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Sci. Rep. 4, 5303 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    H. Kraus, V.A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P.G. Baranov, V. Dyakonov, G.V. Astakhov, Nat. Phys. 10, 157 (2014)CrossRefGoogle Scholar
  9. 9.
    D. Simin, V.A. Soltamov, A.V. Poshakinskiy, A.N. Anisimov, R.A. Babunts, D.O. Tolmachev, E.N. Mokhov, M. Trupke, S.A. Tarasenko, A. Sperlich, P.G. Baranov, V. Dyakonov, G.V. Astakhov, Phys. Rev. X. 6, 031014 (2016)Google Scholar
  10. 10.
    M. Widmann, S.-Y. Lee, T. Rendler, N.T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. Ali Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, J. Wrachtrup, Nat. Mater. 14, 164 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    D.J. Christle, A.L. Falk, P. Andrich, P.V. Klimov, J.U. Hassan, N.T. Son, E. Janzén, T. Ohshima, D.D. Awschalom, Nat. Mater. 14, 160 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A.N. Anisimov, D. Simin, V.A. Soltamov, S.P. Lebedev, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Sci. Rep. 6, 33301 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    V.A. Soltamov, B.V. Yavkin, D.O. Tolmachev, R.A. Babunts, A.G. Badalyan, VYu. Davydov, E.N. Mokhov, I.I. Proskuryakov, S.B. Orlinskii, P.G. Baranov, Phys. Rev. Lett. 115, 247602 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    G.V. Astakhov, D. Simin, V. Dyakonov, B.V. Yavkin, S.B. Orlinskii, I.I. Proskuryakov, A.N. Anisimov, V.A. Soltamov, P.G. Baranov, Appl. Magn. Reson. 47, 793 (2016)CrossRefGoogle Scholar
  15. 15.
    A.N. Anisimov, V.A. Soltamov, E.N. Mokhov, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Appl. Magn. Reson. 49, 85 (2018)CrossRefGoogle Scholar
  16. 16.
    P.G. Baranov, H.J. von Bardeleben, F. Jelezko, J. Wrachtrup, Magnetic Resonance of Semiconductors and their Nanostructures: Basic and Advanced Applications: Springer Series in Materials Science, vol. 253 (Springer, Berlin, 2017)Google Scholar
  17. 17.
    H.J. von Bardeleben, J.L. Cantin, E. Rauls, U. Gerstmann, Phys. Rev. B. 92, 064104 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    H.J. von Bardeleben, J.L. Cantin, A. Csóré, A. Gali, E. Rauls, U. Gerstmann, Phys. Rev. B 94, 121202 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S.G. Carter, Ö.O. Soykal, P. Dev, S.E. Economou, E.R. Glaser, Phys. Rev. B. 92, 161202 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • A. N. Anisimov
    • 1
    Email author
  • S. S. Nagalyuk
    • 1
  • M. V. Muzafarova
    • 1
  • A. P. Bundakova
    • 1
  • R. A. Babunts
    • 1
  • V. A. Soltamov
    • 1
    • 2
  • E. N. Mokhov
    • 1
  • P. G. Baranov
    • 1
  1. 1.Ioffe InstituteSt PetersburgRussia
  2. 2.Experimental Physics VIJulius-Maximilian University of WürzburgWürzburgGermany

Personalised recommendations