Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 6, pp 785–795 | Cite as

Spectroscopic Study of Mn2+ Doped PbS Nanocrystals

  • Ram KripalEmail author
  • C. Rudowicz
  • Upendra Mani Tripathi
Original Paper
  • 51 Downloads

Abstract

Mn2+ doped PbS (PbS:Mn2+) semiconductor nanocrystals have been synthesized by standard chemical method and characterized using various techniques for possible applications in quantum dots. This work describes new physical properties of these nanocrystals that have emerged from our investigations. The PbS:Mn2+ nanocrystals have cubic structure (space Group Fm3m) and the average crystallite size lies between 5 and 10 nm as characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) analysis. The structural properties of PbS:Mn2+ nanoparticles are also studied by UV/Vis absorption spectrum and High-Resolution Transmission Electron Microscopy (HRTEM). The quantitative chemical analysis of pure and Mn2+ doped PbS nanocrystals has been done by Energy Dispersive Spectroscopy (EDS) spectra. The energy band gaps have been determined by UV/Vis absorption study using Tauc Plot as (in eV):1.79, 1.90, 2.23, and 2.39 for Mn2+ concentration equal to 0, 0.05, 0.26, and 0.52%, respectively. The luminescence behavior of the nanocrystals has been studied by photoluminescence (PL) spectra. The magnetic and electronic properties of PbS:Mn2+ nanocrystals were studied using Electron Paramagnetic Resonance (EPR) spectroscopy. Analysis of EPR spectra enabled determination of the electronic g-factor, the second-rank axial zero-field splitting parameter D and the hyperfine parameter A.

Notes

Acknowledgements

The authors are grateful to the Head, Department of Physics for providing departmental facilities. The authors are also grateful to SAIF IIT Bombay for providing EPR and TEM facilities, Dr. Suneet Dwivedi for providing XRD facility of Nano Phosphor Application Centre of the University of Allahabad and Dr. S. N. Pandey for providing PL facility of the MNNIT, Allahabad. One of the authors, Upendra Mani Tripathi, is thankful to the University Grants Commission for granting Junior Research Fellowship.

References

  1. 1.
    S.I. Sandovnikov, N.S. Kozhevnikova, V.G. Pushin, A.A. Rampel, Inorg. Mat. 48(1), 21 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Cao, G. Wang, S. Zhang, X. Zhang, Nanotechnology 17, 3280 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Rempel, Usp. Khim. 76(5), 435 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Pimachev, Y. Dahnovsky, J. Phys. Chem. C 119(29), 16941 (2015)CrossRefGoogle Scholar
  5. 5.
    B. Yu, G. Yin, C. Zhu, F. Gan, Opt. Mater. 11(1), 17 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Y.J. Yang, L.Y. He, Q.F. Zhang, Electrochem. Commun. 7(4), 361 (2005)CrossRefGoogle Scholar
  7. 7.
    J.J. Peterson, T.D. Krauss, Nano Lett. 6(3), 510 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Lee, N.G. Subramaniam, J.W. Lee, T.W. Kang, Appl. Phys. Lett. 90, 262909 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    S. Chandramohan, A. Kanjilal, J.K. Tripathi, S.N. Sarangi, R. Sathyamoorthy, T. Som, J. App. Phys. 105(12), 123507 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Y.T. Nien, K.H. Hwang, I.G. Chen, K. Yu, J. Alloy. Compd. 455, 519 (2008)CrossRefGoogle Scholar
  11. 11.
    D.E. Aspnes, M. Cardona, Phys. Rev. 173, 714 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    J.L. Machol, F.W. Wise, R.C. Patel, D.B. Tanner, Phys. Rev. B 48, 2819 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    J.H. Jhu (ed.), Narrow Band Semiconductor Physics (Science Press, Beijing, 2005)Google Scholar
  14. 14.
    N. Bao, L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, C.A. Grimes, J. Phys. Chem. C 111, 17527 (2007)CrossRefGoogle Scholar
  15. 15.
    A.K. Gupta, R. Kripal, Spectrochim. Acta A 96, 626 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    C. Wang, H.M. Wang, Z.Y. Fang, J. Alloys Compd. 486, 702 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Kripal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, S.G. Prakash, Spectrochim. Acta Part A 76, 523 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    P. Bansal, N. Jaggi, S.K. Rohilla, Res. J. Chem. Sci. 2(8), 69 (2012)Google Scholar
  19. 19.
    S.R. Sam, S.L. Rayar, P. Selvarajan, Inter. J. Adv. Sci. Tech. Res. 5(1), 198 (2015)Google Scholar
  20. 20.
    G. Halder, S. Bhattacharya, J. Phys. Chem. C 119, 13404 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Tauc (ed.), Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)Google Scholar
  22. 22.
    C.W. Litton, D.C. Reynolds, Phys. Rev. 133(2A), 536 (1964)ADSCrossRefGoogle Scholar
  23. 23.
    J. I. Pankove, Optical Processes in Semiconductors, (Prentice Hall, Englewood Cliffs, New Jersey, USA, 1971)Google Scholar
  24. 24.
    R. Kripal, U.M. Tripathi, Adv. Sci. Eng. Med. 9, 130 (2017)CrossRefGoogle Scholar
  25. 25.
    N. Chestnoy, T.D. Harris, R. Hull, L.E. Brus, J. Phys. Chem. 90, 3393 (1986)CrossRefGoogle Scholar
  26. 26.
    H. Cao, G. Wang, S. Zhang, X. Zhang, Nanotechnology 17, 3280 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954)ADSCrossRefGoogle Scholar
  28. 28.
    B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications (Wiley-VCH, New York, 2000)Google Scholar
  29. 29.
    S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York, 1970)Google Scholar
  30. 30.
    S. Taguchi, A. Ishizumi, T. Tayagaki, Y. Kanemitsu, Appl. Phys. Lett. 94, 173101 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    J. Nehrkorn, A. Schnegg, K. Holldack, S. Stoll, Phys. Rev. Lett. 114, 010801 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    T.C. Harman, I. Melngailis, Appl. Solid State Sci. 4, 1 (1974)CrossRefGoogle Scholar
  34. 34.
    C. Rudowicz, S.K. Misra, Appl. Spectrosc. Rev. 36, 11 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    C. Rudowicz, M. Karbowiak, Coord. Chem. Rev. 287, 28 (2015)CrossRefGoogle Scholar
  36. 36.
    R. Boča, Coord. Chem. Rev. 248, 757 (2004)CrossRefGoogle Scholar
  37. 37.
    R. Boča, Struct. Bond. 117, 1 (2006)CrossRefGoogle Scholar
  38. 38.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions  (Clarendon Press, Oxford, 1970). (Dover, New York, 1986) Google Scholar
  39. 39.
    J.E. Wertz, J.R. Bolton, Electron Spin Rresonance Elementary Theory and Practical Applications (McGraw-Hill, New York, 1972)Google Scholar
  40. 40.
    J.A. Weil, J.R. Bolton, J.E. Wertz, Electron Paramagnetic Resonance, Elemental Theory and Practical Applications (Wiley, New York, 1994)Google Scholar
  41. 41.
    J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance, Elemental Theory and Practical Applications (Wiley, New York, 2007)Google Scholar
  42. 42.
    F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition-Metal Compounds (Elsevier, Amsterdam, 1992)Google Scholar
  43. 43.
    S.K. Misra (ed.), Multifrequency Electron Paramagnetic Resonance (Wiley-VCH, Weinheim, 2011)CrossRefGoogle Scholar
  44. 44.
    Erratum, S. K. Misra, C. Rudowicz, http://www.wiley-vch.de/publish/dt/books/ISBN3-527-40779-0/
  45. 45.
    B. Bleaney, D.J.E. Ingram, Proc. R. Soc. A205, 336 (1951)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Ram Kripal
    • 1
    Email author
  • C. Rudowicz
    • 2
  • Upendra Mani Tripathi
    • 1
  1. 1.EPR Lab, Department of PhysicsUniversity of AllahabadAllahabadIndia
  2. 2.Faculty of ChemistryA. Mickiewicz UniversityPoznanPoland

Personalised recommendations