Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 137–158 | Cite as

Improving Multi-contrast Imaging with Reference Guided Location and Orientation Priors on Edges

  • Qingyong Zhu
  • Wei WangEmail author
Original Paper
  • 92 Downloads

Abstract

The multi-contrast magnetic resonance imaging can provide rich clinical and diagnostic information, but it requires long scanning time in data acquisition. In this paper, we propose a reference guided joint reconstruction method to address this problem. The proposed method both incorporates the location and orientation priors on edge regions from a high-resolution reference image into joint sparsity constraints, enabling to effectively reconstruct high-quality multi-contrast images from the under-sampled k-space data. The alternating direction method of multipliers is used to solve the joint sparsity-promoting optimization problem. In addition, a generalized frame with multiple reference images is developed to further improve the reconstruction performance, and the proposed method in combination with parallel imaging is also demonstrated to analyze the feasibility in the practical multi-channel acquisition of multi-contrast images. The experiments have demonstrated the superiority of our proposed method compared to those existing reconstruction technologies in multi-contrast imaging.

Notes

Acknowledgements

We would like to thank the authors that mentioned in paper for sharing their Matlab codes online. We also thank Xi Peng and Shanshan Wang for some helpful discussions. The authors would like to express their sincere gratitude to the reviewers for their positive comments and valuable advice on this paper.

References

  1. 1.
    E.J. Candès, J. Romberg, T. Tao, IEEE Trans. Inf. Theory 52, 489–509 (2006)CrossRefGoogle Scholar
  2. 2.
    R. Chartrand, IEEE Signal Process. Lett. 14, 707–710 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    D.L. Donoho, IEEE Trans. Inf. Theory 52, 1289–1306 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58, 1182–1195 (2007)CrossRefGoogle Scholar
  5. 5.
    U. Gamper, P. Boesiger, S. Kozerke, Magn. Reson. Med. 59, 365–373 (2008)CrossRefGoogle Scholar
  6. 6.
    D. Liang, B. Liu, J. Wang, L. Ying, Magn. Reson. Med. 62, 1574–1584 (2009)CrossRefGoogle Scholar
  7. 7.
    R.G. Baraniuk, V. Cevher, M.F. Duarte, C. Hegde, IEEE Tran. Inf. Theory 56, 1982–2001 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Liang, E.V. DiBella, R.-R. Chen, L. Ying, Magn. Reson. Med. 68, 41–53 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Wu, Y.-J. Zhu, Q.-Y. Tang, C. Zou, W. Liu, R.-B. Dai, X. Liu, E.X. Wu, L. Ying, D. Liang, Magn. Reson. Med. 71, 763–772 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Majumdar, R.K. Ward, Magn. Reson. Imaging 29, 899–906 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Huang, C. Chen, L. Axel, Magn. Reson. Imaging 32, 1344–1352 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Beck, M. Teboulle, IEEE Tran. Image Process. 18, 2419–2434 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A. Beck, M. Teboulle, SIAM J. Imaging Sci. 2, 183–202 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    I. Chatnuntawech, B. Bilgic, A. Martin, K. Setsompop, E. Adalsteinsson, in Proceedings of the IEEE International Symposium on Biomedical Imaging (Brooklyn, NY, USA, 16–19 April, 2015), pp. 335–338Google Scholar
  15. 15.
    L. Weizman, Y.C. Eldar, D. Ben Bashat, Med. Phys. 43, 5357–5369 (2015)CrossRefGoogle Scholar
  16. 16.
    X. Peng, Q. Zhu, S. Wang, D. Liang, in Proceedings of the IEEE International Conference of the Engineering in Medicine and Biology Society (Milano, Italy, 25–29 August, 2015), pp. 7498–7501Google Scholar
  17. 17.
    X. Peng, S. Wang, Q. Zhu, D. Liang, in Proceedings of the 24th Annual Meeting of the International Society for Magn. Reson. Med., (Singapore, 7–13 May, 2016), p. 4232Google Scholar
  18. 18.
    M.J. Ehrhardt, M.M. Betcke, SIAM J. Imaging Sci. 9, 1084–1106 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    M.J. Ehrhardt, S.R. Arridge, IEEE Trans. Image Process. 23, 9–18 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J. Huang, T. Zhang, Ann. Stat. 38, 1978–2004 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  22. 22.
    M.F. Duarte, S. Sarvotham, D. Baron, M.B. Wakin, R.G. Baraniuk, in Proceedings of the 39th Asilomar Conference on Signals, Systems and Computers (Pacific Grove, CA, USA, 30 October–2 November, 2005), pp. 1537–1541Google Scholar
  23. 23.
    E.J. Candes, M.B. Wakin, S.P. Boyd, J. Fourier Anal. Appl. 14, 877–905 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    W. Guo, W. Yin, SIAM J. Imaging Sci. 5, 809–834 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42, 952–962 (1999)CrossRefGoogle Scholar
  26. 26.
    Y. Xu, W. Yin, Z. Wen, Y. Zhang, Front. Math. China 7, 365–384 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Yang, Y. Zhang, SIAM J. Sci. Comput. 33, 250–278 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J.T. Oden, R. Glowinski, P.L. Tallec, Math. Comput. 58, 197 (1989)Google Scholar
  29. 29.
    W. Deng, W. Yin, Y. Zhang, Technical Report, Rice University (2011)Google Scholar
  30. 30.
    T. Rohlfing, N.M. Zahr, E.V. Sullivan, A. Pfefferbaum, Human Brain Mapp. 31, 798–819 (2010)CrossRefGoogle Scholar
  31. 31.
    C.A. Cocosco, V. Kollokian, K.S. Kwan, A.C. Evans, Neuroimage 5, S425 (1997)Google Scholar
  32. 32.
    Y. Yechieli, M. Magaritz, M. Shatkay, D. Ronen, I. Carmi, IEEE Trans. Med. Imaging 31, 1250–1262 (2012)CrossRefGoogle Scholar
  33. 33.
    R. Chartrand, W. Yin, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (Las Vegas, NV, USA, 31 March–4 April, 2008), pp. 3869–3872Google Scholar
  34. 34.
    J.P.W. Pluim, J. Maintz, M.A. Viergever, IEEE Trans. Med. Imaging 19, 809–814 (2002)CrossRefGoogle Scholar
  35. 35.
    A. Gooya, K.M. Pohl, M. Bilello, G. Biros, C. Davatzikos, in Proceedings of the 14th International Conference on Medical Image Computing and Computer-assisted Intervention (Toronto, Canada, 18–22 September, 2011), pp. 532–540Google Scholar
  36. 36.
    A. Sotiras, Y. Ou, N. Paragios, C. Davatzikos, Handbook of Biomedical Imaging (Springer, NewYork, 2015) pp. 331–359Google Scholar
  37. 37.
    N. Debroux, S. Ozer, C.L. Guyader, J. Math. Imaging Vision 59, 432–455 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    B.S. He, H. Yang, S.L. Wang, J. Optim. Theory Appl. 106, 337–356 (2000)MathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Found. Trends Mach. Learn. 3, 1–122 (2010)CrossRefGoogle Scholar
  40. 40.
    K. Bahrami, F. Shi, X. Zong, S.H. Won, H. An, D. Shen, IEEE Trans. Med. Imaging 35, 2085–2097 (2016)CrossRefGoogle Scholar
  41. 41.
    A. Majumdar, R.K. Ward, T. Aboulnasr, IEEE Trans. Med. Imaging 31, 2253–2266 (2012)CrossRefGoogle Scholar
  42. 42.
    S.G. Lingala, M. Jacob, IEEE Trans. Med. Imaging 32, 1132–1145 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of mathematic and statisticsXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations