Applied Magnetic Resonance

, Volume 49, Issue 11, pp 1201–1216 | Cite as

An Assessment of the Use of Mesoporous Silica Materials to Improve Pulsed Dipolar Spectroscopy

  • Yei-Chen Lai
  • Albert Chang
  • Chia-Min Yang
  • Yun-Wei ChiangEmail author
Original Paper


Protein immobilization in mesoporous silica nanoparticles has attracted much attention due to its wide range of applications. However, it remains largely unexplored how the use of mesopores can alter the spatial distribution of encapsulated biomolecules so as to improve pulsed dipolar spectroscopy sensitivity. Here, we performed electron spin resonance measurements for three different spin-labeled biomolecules (including two different peptides and a protein) encapsulated in various types of mesoporous materials differing in textural properties such as nanochannel length (e.g., 0.2–4 μm) and average pore diameter (e.g., 6–11 nm, approximately). Our results show that biomolecules are clustered somewhat upon the encapsulation into mesopores, and that due to the clustering, instantaneous diffusion plays an important role in the spin relaxation in nanochannels. The extent of molecular clustering exhibits a clear positive correlation with the length of nanochannels, whereas it shows little correlation with pore diameters. Among the materials studied, mesoporous materials with the shortest length of nanochannels are most effective to reduce spin clustering, thus suppressing the unwanted instantaneous diffusion and enhancing spin–spin relaxation time. This study has opened a possibility of improving the quality of pulsed dipolar spectroscopy with mesoporous silica nanoparticles.



This work was supported by Grants from the Ministry of Science and Technology of Taiwan (105-2628-M-007-005 and 106-2627-M-007-009) and the Frontier Research Center on Fundamental and Applied Sciences of Matters at NTHU. All of the CW/pulse ESR measurements were conducted in the Research Instrument Center of Taiwan located at NTHU.

Supplementary material

723_2018_1040_MOESM1_ESM.pdf (495 kb)
Supplementary material 1 (PDF 495 kb)


  1. 1.
    J. Liu, Q.H. Yang, C. Li, Chem. Commun. 51, 13731–13739 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Mitragotri, P.A. Burke, R. Langer, Nat. Rev. Drug Discov. 13, 655–672 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Isaksson, E.B. Watkins, K.L. Browning, T.K. Lind, M. Cardenas, K. Hedfalk, F. Hook, M. Andersson, Nano Lett. 17, 476–485 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    S. Matsuura, M. Chiba, T. Tsunoda, A. Yamaguchi, J. Nanosci. Nanotechnol. 18, 104–109 (2018)CrossRefGoogle Scholar
  5. 5.
    B.W. Chen, W. Qi, X.L. Li, C.H. Lei, J. Liu, Small 9, 2228–2232 (2013)CrossRefGoogle Scholar
  6. 6.
    C.H. Lee, T.S. Lin, C.Y. Mou, Nano Today 4, 165–179 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Hudson, J. Cooney, E. Magner, Angew. Chem. Int. Ed. 47, 8582–8594 (2008)CrossRefGoogle Scholar
  8. 8.
    N. Carlsson, H. Gustafsson, C. Thorn, L. Olsson, K. Holmberg, B. Akerman, Adv. Colloid Interface Sci. 205, 339–360 (2014)CrossRefGoogle Scholar
  9. 9.
    M.R. Fleissner, M.D. Bridges, E.K. Brooks, D. Cascio, T. Kalai, K. Hideg, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 108, 16241–16246 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Tong, P.P. Borbat, J.H. Freed, Y.K. Shin, Proc. Natl. Acad. Sci. USA 106, 5141–5146 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S.Y. Park, P.P. Borbat, G. Gonzalez-Bonet, J. Bhatnagar, A.M. Pollard, J.H. Freed, A.M. Bilwes, B.R. Crane, Nat. Struct. Mol. Biol. 13, 400–407 (2006)CrossRefGoogle Scholar
  12. 12.
    C.J. Tsai, Y.W. Chiang, J. Phys. Chem. C 116, 19798–19806 (2012)CrossRefGoogle Scholar
  13. 13.
    Y.C. Lai, Y.F. Chen, Y.W. Chiang, PLoS ONE 8, e68264 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    K.J. Chang, Y.H. Kuo, Y.W. Chiang, J. Phys. Chem. B 121, 4355–4363 (2017)CrossRefGoogle Scholar
  15. 15.
    Y.W. Huang, Y.C. Lai, C.J. Tsai, Y.W. Chiang, Proc. Natl. Acad. Sci. USA 108, 14145–14150 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Kozin, G. Bertho, A.K. Mazur, H. Rabesona, J.P. Girault, T. Haertle, M. Takahashi, P. Debey, G.H.B. Hoa, J. Biol. Chem. 276, 46364–46370 (2001)CrossRefGoogle Scholar
  17. 17.
    Y.W. Huang, Y.W. Chiang, Phys. Chem. Chem. Phys. 13, 17521–17531 (2011)CrossRefGoogle Scholar
  18. 18.
    K.J. Oh, S. Barbuto, N. Meyer, R.S. Kim, R.J. Collier, S.J. Korsmeyer, J. Biol. Chem. 280, 753–767 (2005)CrossRefGoogle Scholar
  19. 19.
    Y.H. Kuo, Y.R. Tseng, Y.W. Chiang, Langmuir 29, 13865–13872 (2013)CrossRefGoogle Scholar
  20. 20.
    C.H. Liu, C.Y. Lin, J.L. Chen, N.C. Lai, C.M. Yang, J.M. Chen, K.T. Lu, J. Catal. 336, 49–57 (2016)CrossRefGoogle Scholar
  21. 21.
    P.H. Ku, C.Y. Hsiao, M.J. Chen, T.H. Lin, Y.T. Li, S.C. Liu, K.T. Tang, D.J. Yao, C.M. Yang, Langmuir 28, 11639–11645 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    A. Zecevic, G.R. Eaton, S.S. Eaton, M. Lindgren, Mol. Phys. 95, 1255–1263 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    R. Dastvan, B.E. Bode, M.P. Karuppiah, A. Marko, S. Lyubenova, H. Schwalbe, T.F. Prisner, J. Phys. Chem. B 114, 13507–13516 (2010)CrossRefGoogle Scholar
  25. 25.
    P.P. Borbat, J.H. Freed, Methods Enzymol. 423, 52–116 (2007)CrossRefGoogle Scholar
  26. 26.
    G. Jeschke, S. Schlick, Phys. Chem. Chem. Phys. 8, 4095–4103 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Ruthstein, A.M. Raitsimring, R. Bitton, V. Frydman, A. Godt, D. Goldfarb, Phys. Chem. Chem. Phys. 11, 148–160 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Ruthstein, A. Potapov, A.M. Raitsimring, D. Goldfarb, J. Phys. Chem. B 109, 22843–22851 (2005)CrossRefGoogle Scholar
  29. 29.
    Y.W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 177, 184–196 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Y.W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 172, 279–295 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    E.R. Georgieva, A.S. Roy, V.M. Grigoryants, P.P. Borbat, K.A. Earle, C.P. Scholes, J.H. Freed, J. Magn. Reson. 216, 69–77 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Nevzorov, J.H. Freed, J. Chem. Phys. 115, 2401–2415 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42, 255–276 (1981)ADSGoogle Scholar
  34. 34.
    S.Y. Chen, C.Y. Tang, W.T. Chuang, J.J. Lee, Y.L. Tsai, J.C.C. Chan, C.Y. Lin, Y.C. Liu, S.F. Cheng, Chem. Mater. 20, 3906–3916 (2008)CrossRefGoogle Scholar
  35. 35.
    M. Ferdousi, M. Pazouki, F.A. Hessari, M. Kazemzad, J. Porous Mater. 23, 453–463 (2016)CrossRefGoogle Scholar
  36. 36.
    S.Y. Chen, Y.T. Chen, J.J. Lee, S. Cheng, J. Mater. Chem. 21, 5693–5703 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations