Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 29–45 | Cite as

Pore Structure Evaluation of Bioclastic Limestone Using NMR and HPMI Measurements

  • Yujiao HanEmail author
  • Yiren Fan
  • Hongjun Xu
  • Xinmin Ge
  • Jiaxiong Liu
  • Yunhai Cong
Original Paper
  • 35 Downloads

Abstract

Pore structure evaluation is a crucial segment of revealing the reservoir characteristics and percolation mechanism. Considering the diversity of origins, types and combinations in reservoir space, the effective evaluation method of bioclastic limestone pore structure had not been built yet, which greatly restricted the comprehension of storage-permeability mechanism, as well as the subsequent development strategies. Therefore, this study systematically analyzed the corresponding relationship between the fractal characteristics of capillary pressure curves and pore connectivity. The T2 relaxation criterion of different pore diameter components were determined reasonably according to the features of nuclear magnetic resonance T2 spectrum. Combined with a fuzzy clustering algorithm, a new logging classification method was established using proportions of different pore components as sensitive parameters. The results showed that the capillary force curves of bioclastic limestone reservoir mainly exhibited two kinds of form: “convex” and “concave”. The former showed better storage-percolation characteristics; while the same characteristics of the latter were closely related to inflection points, degrading by the location of respective point from right to left; In addition, the relationship between the pore throat radius r and nuclear magnetic relaxation time T2 could be classified into four stages obviously. With the pore throat radius of 0.15, 1, 5 μm and T2 relaxation time 30, 90 and 200 ms, the pore structure of bioclastic limestone was effectively divided into four categories. On this basis, the calculation precision of permeability would be significantly improved.

Notes

Acknowledgements

This work was supported by the National Key Foundation for Exploring Scientific Instrument of China (2013YQ170463-06), Natural Science Foundation of China (41674131) and Fundamental Research Funds for the Central Universities (16CX06048A and 16CX05004A).

References

  1. 1.
    Z.Q. Mao, C.G. Zhang, C.Z. Lin, J. Ouyang, Q. Wang, C.J. Yan, in SPWLA 36th Annual Logging Symposium (Paris, France, 26–29 June, 1995), SPWLA-1995-LLGoogle Scholar
  2. 2.
    K. Verwer, G.P. Eberli, R.J. Weger, AAPG Bull. 95, 175–190 (2011)CrossRefGoogle Scholar
  3. 3.
    E. Aliakbardoust, H. Rahimpour-Bonab, J. Petrol. Sci. Eng. 122, 296–309 (2013)CrossRefGoogle Scholar
  4. 4.
    C.L. Li, C.X. Li, Well Log Technol. 34, 233–237 (2010)ADSGoogle Scholar
  5. 5.
    M. Kumar, R. Sok, M.A. Knackstedt, S. Latham, T.J. Senden, A.P. Sheppard, T. Varslot, Petrophysics. 51, 102–117 (2010)Google Scholar
  6. 6.
    Y. Nakashima, T. Kikuchi, Geophys. Prospect. 55, 235–254 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S.N. Bassem, Y. Géraud, P. Rochette, N. Bur, AAPG Bull. 93, 719–739 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Gao, X.R. An, S.H. Zhi, Z.Q. Li, Y. Peng, X. Gao, P.Z. Yu, Well Log Technol. 24, 188–193 (2000)Google Scholar
  9. 9.
    K. Li, J. Petrol. Sci. Eng. 73, 20–26 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Schmitt, C.P. Fernandes, J.A.B.C. Neto, F.G. Wolf, V.S.S. Santos, Mar. Pet. Geol. 39, 138–149 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, Y. Zhu, S. Chen, W. Li, Energy Fuels 28, 945–955 (2014)CrossRefGoogle Scholar
  12. 12.
    L.Z. Xiao, T.Y. Liu, R.S. Fu, Acta Pet. Sin. 25, 38–41 (2004)Google Scholar
  13. 13.
    L.Z. Xiao, The Technology and Application of Magnetic Resonance Imaging Logging and Rock NMR (Science Press, Beijing, 1998)Google Scholar
  14. 14.
    H. Gao, H. Li, J. Petrol. Sci. Eng. 133, 258–267 (2015)CrossRefGoogle Scholar
  15. 15.
    T.Y. Liu, S.M. Wang, R.S. Fu, M.S. Zhou, Y.H. Li, M. Luo, Oil Geophys. Prospect. 38, 328–333 (2003)Google Scholar
  16. 16.
    Z.H. Liu, C.C. Zhou, L.H. Zhang, D.J. Dai, C.L. Li, L. Zhang, G.Q. Liu, Y.J. Shi, in SPWLA 48th Annual Logging Symposium (Austin, Texas, 3–6 June, 2007), SPWLA-2007-SGoogle Scholar
  17. 17.
    X.M. Ge, Y.R. Fan, L.M. Tang, Y.G. Chen, L.H. Qi, S. Xing, J. Central South Univ. (Sci. Technol.) 46, 2227–2235 (2015)Google Scholar
  18. 18.
    X.M. Ge, Y.R. Fan, Y.C. Cao, Y.J. Xu, X. Liu, Y.G. Chen, Appl. Magn. Reson. 45, 155–167 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Bai, Y. Sun, Y. Liu, M. Guo, Fuel 187, 1–8 (2017)CrossRefGoogle Scholar
  20. 20.
    Z. Cao, G.D. Liu, H.B. Zhan, C.Z. Li, Y. You, C.Y. Yang, H. Jiang, Sci. Rep. 36919, 1–13 (2016)Google Scholar
  21. 21.
    J. Lai, G. Wang, J. Nat. Gas Sci. Eng. 24, 185–196 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Dell Acqua, P. Gamba, Trans. Geosci. Remote Sens. 39, 2287–2297 (2001)Google Scholar
  23. 23.
    Y. Volokitin, W.J. Looyestijn, W.F.J. Slijkerman, J. P. Hofman, Petrophysics 42, 334–343 (2001)Google Scholar
  24. 24.
    Z.X. Xiao, L. Xiao, Atomic Energy Sci. Technol. 42, 868–871 (2008)Google Scholar
  25. 25.
    J. Hofman, W. Slijkermail, W. Looyestijn, Y. Volokitin, in SPWLA 40th Annual Logging Symposium (Oslo, Norway, 30 May-3 June, 1999), SPWLA-1999-KKKGoogle Scholar
  26. 26.
    M. Eslami, A. Kadkhodaie-Ilkhchi, Y. Sharghi, N. Golsanami, J. Petrol. Sci. Eng. 111, 50–58 (2013)CrossRefGoogle Scholar
  27. 27.
    H.Y. Yun, W.J. Zhao, B.K. Liu, C.C. Zhou, F.M. Zhou, Well Log Technol. 26, 18–21 (2002)Google Scholar
  28. 28.
    L. Xiao, Z.Q. Mao, C.C. Zou, Y. Jin, J.C. Zhu, J. Petrol. Sci. Eng. 147, 154–167 (2016)CrossRefGoogle Scholar
  29. 29.
    J.L. Su, J.M. Sun, T. Wang, S.W. Zhang, J. Jilin Univ. (Earth Sci. Edition) 41, 380–386 (2011)Google Scholar
  30. 30.
    Y.D. He, Z.Q. Mao, L.Z. Xiao, X.J. Ren, Chin. J. Geophys. 48, 373–378 (2005)Google Scholar
  31. 31.
    L. Xiao, Z.Q. Mao, Z.X. Xiao, C. Zhang, in SPWLA 49th Annual Logging Symposium (Austin, Texas, 25–28 May, 2008), SPWLA-2008-AAGoogle Scholar
  32. 32.
    X.M. Wang, Y.R. Guo, J.H. Fu, Pet. Explor. Dev. 32, 35–38 (2005)Google Scholar
  33. 33.
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1977)Google Scholar
  34. 34.
    H. Gao, B. Yu, Y. Duan, Q. Fang, Int. J. Heat Mass Transf. 69, 26–33 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Sakhaee-Pour, W. Li, J. Nat. Gas Sci. Eng. 30, 578–582 (2016)CrossRefGoogle Scholar
  36. 36.
    F. Yang, Z.F. Ning, H.Q. Liu, Fuel 115, 378–384 (2014)CrossRefGoogle Scholar
  37. 37.
    A.J. Katz, A.H. Thompson, Phy. Rev. Lett. 54, 1325–1328 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    F. Jiang, D. Chen, J. Chen, Q. Li, Y. Liu, X. Shao, T. Hu, J. Dai, Energy Fuels 30, 4676–4689 (2016)CrossRefGoogle Scholar
  39. 39.
    K.J. Dunn, D.J. Bergman, G.A. Latorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Application (Elsevier, New York, 2002), pp. 94–95Google Scholar
  40. 40.
    F. Xu, S.T. Bai, J.B. Zhao, Z.W. Si, Z.D. Zhuang, J. Oil Gas Technol. 35, 76–80 (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of GeosciencesChina University of PetroleumQingdaoChina
  2. 2.Research Institute of Petroleum Exploration and DevelopmentPetroChinaBeijingChina
  3. 3.GWDC Geology Research Institute, CNPCPanjinChina

Personalised recommendations