Gas Flow Mapping in a Recorder: An Application of SPRITE MRI

Original Paper


The study of gas flow characteristics in wind instruments, specifically recorders, presents a challenge. Most currently available techniques are invasive, and computational fluid dynamics (CFD) simulations must be relied upon. In this paper, a magnetic resonance imaging (MRI) technique is presented that is non-invasive and non-destructive, and offers quantitative results that can be used to better understand gas flow in a recorder. In particular, 3-D MRI measurements of the velocity field in a real playing recorder are presented. A divergence map and maps of the correlation coefficient (\(R^2\)) are presented alongside the velocity maps as a tools for validation. A log ratio of signal amplitudes is also mapped to indicate regions with larger turbulent fluctuations. This methodology affords a useful tool for the validation of CFD simulations for the study of wind instruments.



We gratefully acknowledge the support of the New Brunswick Innovation Foundation and the Natural Sciences and Engineering Research Council (Discovery Grant RGPIN-2017-04564) and the help of Brian Titus in the physics department workshop.


  1. 1.
    M.P. Verge, B. Fabre, A. Hirschberg, A.P.J. Wijnands, J. Acoust. Soc. Am. 101, 2914–2924 (1997)CrossRefADSGoogle Scholar
  2. 2.
    B. Fabre, A. Hirschberg, Acta Acustica United with Acustica 86, 599–610 (2000)Google Scholar
  3. 3.
    I.V. Mastikhin, B.J. Balcom, P.J. Prado, C.B. Kennedy, J. Magn. Reson. 136, 159–168 (1999)CrossRefADSGoogle Scholar
  4. 4.
    B. Newling, C.C. Poirier, Y. Zhi, J.A. Rioux, A.J. Coristine, D. Roach, B.J. Balcom, Phys. Rev. Lett., 93, 154503-1–154501-4 (2004)CrossRefADSGoogle Scholar
  5. 5.
    B. Newling, Prog. Nucl. Magn. Reson. Spectrosc. 52, 31–48 (2008)CrossRefGoogle Scholar
  6. 6.
    I.V. Mastikhin, B. Newling, Phys. Rev. E., 72, 1-1–1-12 (2005)CrossRefGoogle Scholar
  7. 7.
    I.V. Mastikhin, A. Arbabi, Micropor. Mesopor. Mat. 178, 3–6 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Galvosas, P.T. Callaghan, J. Magn. Reson. 181, 119–125 (2006)CrossRefADSGoogle Scholar
  9. 9.
    G. Shiko, A.J. Sederman, L.F. Gladden, J. Magn. Reson. 216, 183–191 (2012)CrossRefADSGoogle Scholar
  10. 10.
    A.J. Sederman, M.D. Mantle, C. Buckley, L.F. Gladden, J. Magn. Reson. 166, 182–189 (2004)CrossRefADSGoogle Scholar
  11. 11.
    A.B. Tayler, D.J. Holland, A.J. Sederman, L.F. Gladden, J. Magn. Reson. 211, 1–10 (2011)CrossRefADSGoogle Scholar
  12. 12.
    M. Kadbi, M.J. Negahdar, J.W. Cha, M. Traughber, P. Martin, M.F. Stoddard, A.A. Amini, Magn. Reson. Med. 73, 939–950 (2015)CrossRefGoogle Scholar
  13. 13.
    L.F. Gladden, A.J. Sederman, J. Magn. Reson. 229, 2–11 (2013)CrossRefADSGoogle Scholar
  14. 14.
    N. Giordano, J. Acoust. Soc. Am. 135, 906–916 (2014)CrossRefADSGoogle Scholar
  15. 15.
    R. Auvray, A. Ernoult, S. Terrien, P.Y. Lagrée, B. Fabre, C. Vergez, Acta Acustica United with Acustica 101, 317–330 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Terrien, R. Blandin, C. Vergez, B. Fabre, Acta Acustica United with Acustica 101, 300–316 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Giordano, J. Acoust. Soc. Am. 133, 1111–1118 (2013)CrossRefADSGoogle Scholar
  18. 18.
    M.P. Verge, B. Fabre, W.E.A. Mahu, A. Hirschberg, R.R. van Hassel, A.P.J. Wijnands, J.J. de Vries, C.J. Hogendoorn, J. Acoust. Soc. Am. 95, 1119–1132 (1994)CrossRefADSGoogle Scholar
  19. 19.
    F. Blanc, B. Fabre, N. Montgermont, P. De La Cuadra, A. Alemida, Acta Acustica United with Acustica 96, 642–653 (2010)CrossRefGoogle Scholar
  20. 20.
    P. de la Cuadra, C. Vergez, B. Fabre, J. Flow Vis. Image Process. 14, 355–374 (2007)CrossRefGoogle Scholar
  21. 21.
    R. Auvray, B. Fabre, P.Y. Lagrée, J. Acoust. Soc. Am. 131, 1574–1585 (2012)CrossRefADSGoogle Scholar
  22. 22.
    J.C. Price, W.A. Johnston, D.D. McKinnon, J. Acoust. Soc. Am. 138, 3282–3292 (2015)CrossRefADSGoogle Scholar
  23. 23.
    D. Ferrand, C. Vergez, B. Fabre, F. Blanc, Acta Acustica United with Acustica 96, 701–712 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Masuda, T. Kato, K. Kawashima, T. Kagawa, SICE Annu. Conf. 2012, 1319–1324 (2012)Google Scholar
  25. 25.
    N.H. Fletcher, T.D. Rossing, in The Physics of Musical Instruments, 2nd edn. (Springer, New York, 1998), pp. 503–537CrossRefMATHGoogle Scholar
  26. 26.
    D.E. Hall, in Musical Acoustics, 3rd edn. (Brooks/Cole, Pacific Grove, CA, 2002), pp. 44–47, 230–253Google Scholar
  27. 27.
    T. Iwasaki, T. Kobayashi, K. Takahashi, T. Takami, A. Nishida, M. Aoyagi, Proc. Mtgs. Acoust. (2013). Google Scholar
  28. 28.
    H. Yokoyama, A. Miki, H. Onitsuka, A. Iida, J. Acoust. Soc. Am. 138, 859–873 (2015)CrossRefADSGoogle Scholar
  29. 29.
    R. Auvray, A. Ernoult, B. Fabre, P.Y. Lagréem, J. Acoust. Soc. Am. 136, 389–400 (2014)CrossRefADSGoogle Scholar
  30. 30.
    M.P. Verge, A. Hirschberg, R. Caussé, J. Acoust. Soc. Am. 101, 2925–2939 (1997)CrossRefADSGoogle Scholar
  31. 31.
    D.G. Nishimura, Principles of magnetic resonance imaging, 23–98 & 203–212. (2010)Google Scholar
  32. 32.
    P.T. Callaghan, Translational Dynamics and Magnetic Resonance (Oxford University Press, Oxford, 2011) pp. 107–248CrossRefGoogle Scholar
  33. 33.
    J.M. Pope, S. Yao, Concepts Magn. Reson. 5, 281–302 (1993)CrossRefGoogle Scholar
  34. 34.
    D.O. Kuethe, Phys. Rev. A 40, 4542–4551 (1989)CrossRefADSGoogle Scholar
  35. 35.
    D.O. Kuethe, Phys. Rev. E 51, 3252–3262 (1995)CrossRefADSGoogle Scholar
  36. 36.
    J.S. Milton, J.C. Arnold, in Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 2nd edn. (McGraw Hill, Boston, 2003), pp. 348–402Google Scholar
  37. 37.
    D. Xiao, B.J. Balcom, J. Magn. Reson. 231, 126–132 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UNB MRI Centre, Department of Physics, University of New BrunswickFrederictonCanada

Personalised recommendations