Advertisement

Applied Magnetic Resonance

, Volume 49, Issue 8, pp 783–801 | Cite as

Development of Very-Low-Temperature Millimeter-Wave Electron-Spin-Resonance Measurement System

  • Y. Fujii
  • Y. Ishikawa
  • K. Ohya
  • S. Miura
  • Y. Koizumi
  • A. Fukuda
  • T. Omija
  • S. Mitsudo
  • T. Mizusaki
  • A. Matsubara
  • H. Yamamori
  • T. Komori
  • K. Morimoto
  • H. Kikuchi
Original Article
  • 117 Downloads

Abstract

We report the development of a millimeter-wave electron-spin-resonance (ESR) measurement system at the University of Fukui using a 3He/4He dilution refrigerator to reach temperatures below 1 K. The system operates in the frequency range of 125–130 GHz, with a homodyne detection. A nuclear-magnetic-resonance (NMR) measurement system was also developed in this system as the extension for millimeter-wave ESR/NMR double magnetic-resonance (DoMR) experiments. Several types of Fabry–Pérot-type resonators (FPR) have been developed: A piezo actuator attached to an FPR enables an electric tuning of cavity frequency. A flat mirror of an FPR has been fabricated using a gold thin film aiming for DoMR. ESR signal was measured down to 0.09 K. Results of ESR measurements of an organic radical crystal and phosphorous-doped silicon are presented. The NMR signal from 1H contained in the resonator is also detected successfully as a test for DoMR.

Notes

Acknowledgements

We are very grateful to Dr. S. Vasiliev for his large efforts on the construction of the ESR system in the DR and his useful advice on the measurements. We appreciate the support of Prof. Soonchil Lee (Department of Physics, Korea Advanced Institute of Science and Technology) for providing the Si:P sample. We thank Prof. S. Yonezawa, Prof. Y. Hasegawa, and Dr. Y. Arata (Headquarters for Innovative Society–Academia Cooperation, University of Fukui) for their support on the use of the fluorescent X-ray measurement system, and KIYOKAWA Plating Industry Co., Ltd., for providing us with a standard gold thin film for the fluorescent X-ray measurements. This study is partly supported by JSPS KAKENHI Grant Numbers 17K05514 and 26400331, and Cooperative Research Program of the Research Center for Development of Far-Infrared Region, University of Fukui (No. H27FIRDM011E, H28FIRDM024A, and H29FIRDM015B).

References

  1. 1.
    R.S. Alger, Electron Paramagnetic Resonance: Techniques and Applications, 2nd edn. (Wiley, New York, 1968)Google Scholar
  2. 2.
    C.P. Poole Jr., Electron Spin Resonance, 2nd edn. (Dover Publications Inc., New York, 1983)Google Scholar
  3. 3.
    C.P. Slichter, Principles of Magnetic Resonance with Example from Solid State Physics (Harper&Row Publications Inc., New York, 1963)Google Scholar
  4. 4.
    B. Cowan, Nuclear Magnetic Resonance and Relaxation (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  5. 5.
    L. Balents, Nature 464, 11 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Okura, K. Ishida, Y. Kawasaki, Y. Kitaoka, Y. Yamamoto, Y. Miyako, T. Fukuhara, K. Maezawa, Physica. B 281–282, 61 (2000)CrossRefGoogle Scholar
  7. 7.
    Y. Fujii, T. Goto, K. Awaga, T. Okuno, Y. Sasaki, T. Mizusaki, J. Magn. Magn. Mater. 177–181, 991 (1998)CrossRefGoogle Scholar
  8. 8.
    T. Itou, A. Oyamada, S. Maegawa, R. Kato, Nat. Phys. 6, 673 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zheludev, M. Horvatić, Phys. Rev. Lett. 118, 167206 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A. Koda, W. Higemoto, R. Kadono, K. Ishida, Y. Kitaoka, C. Geibel, F. Steglich, Physica. B 281–282, 16 (2001)Google Scholar
  11. 11.
    F. Xiao, J.S. Möller, T. Lancaster, R.C. Williams, F.L. Pratt, S.J. Blundell, D. Ceresoli, A.M. Barton, J.L. Manson, Phys. Rev. B 91, 144417 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    R.N. Ruby, H. Benoit, P.L. Scott, C.D. Jeferies, Bull. Am. Phys. Soc. Series II 6, 512 (1962)Google Scholar
  13. 13.
    V.B. Fedorov, Cryogenics 5, 911 (1965)CrossRefGoogle Scholar
  14. 14.
    K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 41, 475 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 44, 757 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    K. Koyama, M. Yoshida, T. Sakon, D.X. Li, T. Suzuki, M. Motokawa, J. Phys. Soc. Jpn. 69, 3425 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    M. Mola, S. Hill, P. Goy, M. Gross, Rev. Sci. Instrum. 71, 186 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    T. Sakon, H. Nojiri, K. Koyama, T. Asano, Y. Ajiro, M. Motokawa, J. Phys. Soc. Jpn. 72, 140 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Vasiliyev, J. Järvinen, E. Tjukanoff, A. Kharitonov, S. Jaakkola, Rev. Sci. Instrum. 75, 94 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    M. Hagiwara, T. Kashiwagi, H. Yashiro, T. Umeno, T. Ito, T. Sano, J. Phys: Conf. Ser. 150, 012015 (2009)Google Scholar
  21. 21.
    S. Sheludiakov, J. Ahokas, O. Vainio, J. Järvinen, D. Zvezdov, S. Vasiliev, V.V. Khmelenko, S. Mao, D.M. Lee, Rev. Sci. Instrum. 85, 053902 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J. Järvinen, J. Ahokas, S. Sheludyakov, O. Vainio, L. Lehtonen, S. Vasiliev, D. Zvezdov, Y. Fujii, S. Mitsudo, T. Mizusaki, M. Gwak, S.-G. Lee, S. Lee, L. Vlasenko, Phys. Rev. B 90, 214401 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    C.A. McDowell, A. Naito, J. Magn. Reson. 45, 205 (1981)ADSGoogle Scholar
  24. 24.
    C.A. McDowell, A. Naito, D.L. Sastry, Y.U. Cui, K. Sha, S.X. Yu, J. Mol. Struct. 195, 361 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    B. Epel, A. Pöppl, P. Manikandan, S. Vega, D. Goldfarb, J. Magn. Reson. 148, 388 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    G.W. Morley, L.C. Brunel, J.V. Tol, Rev. Sci. Instrum. 79, 064703 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    J.H. Ardenkjæ-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 18 (2003)Google Scholar
  28. 28.
    K.R. Thurber, W.M. Yau, R. Tycko, J. Magn. Reson. 204, 303 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J. Leggett, R. Hunter, J. Granwehr, R. Panek, A.J. Perez-Linde, A.J. Horsewill, J. McMaster, G. Smith, W. Köckenberger, Phys. Chem. Chem. Phys. 12, 5883 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Phys. Chem. Chem. Phys. 12, 5799 (2010)CrossRefGoogle Scholar
  31. 31.
    L. Lumata, M. Merritt, C. Khemtong, S.J. Ratnakar, V.J. Tol, L. Yu, L. Song, Z. Kovacs, RSC Adv. 2, 12812 (2012)CrossRefGoogle Scholar
  32. 32.
    A.W. Overhauser, Phys. Rev. 92, 411 (1953)ADSCrossRefGoogle Scholar
  33. 33.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)Google Scholar
  34. 34.
    B.E. Kane, Nature 393, 133 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Fujii, S. Mitsudo, K. Morimoto, T. Mizusaki, M. Gwak, S.G. Lee, A. Fukuda, A. Matsubara, T. Ueno, S. Lee, J. Phys: Conf. Ser. 568, 042005 (2014)Google Scholar
  36. 36.
    Y. Ishikawa, K. Ohya, Y. Fujii, Y. Koizumi, S. Miura, S. Mistudo, A. Fukuda, T. Asano, T. Mizusaki, A. Matsubara, H. Kikuchi, H. Yamamori, J. Infra. Millim. THz Waves 39, 288 (2018)CrossRefGoogle Scholar
  37. 37.
    Y. Ishikawa, K. Ohya, Y. Fujii, A. Fukuda, S. Miura, S. Mitsudo, H. Yamamori, H. Kikuchi, J. Infra. Millim. THz Waves 39, 387 (2018)CrossRefGoogle Scholar
  38. 38.
    S.A. Vasilyev, A.Ya. Katunin, A.I. Safonov, A.V. Frolov, E. Tjukanov, Appl. Magn. Reson. 3, 1061 (1992)CrossRefGoogle Scholar
  39. 39.
    A. Fukuda, H. Takenaka, T. Mizusaki, J. Low Temp. Phys. 121, 737 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    A. Fukuda, H. Takenaka, T. Ohmi, T. Mizusaki, J. Low Temp. Phys. 126, 127 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    H. Kogelnik, T. Li, Proc. IEEE 54, 10 (1966)CrossRefGoogle Scholar
  42. 42.
    G. Feher, Phys. Rev. 114, 1219 (1959)ADSCrossRefGoogle Scholar
  43. 43.
    S. Gonda, Preparation and Evaluation of Thin Film and Application Technique Handbook (in Japanese) (Fuji-Technosystem Co., Ltd., Tokyo, 1984)Google Scholar
  44. 44.
    R.A. Serway, Principles of Physics, 2nd edn., (Saunders College Pub, Fort Worth. 1998), p. 602 (ISBN: 0-03-020457-7) Google Scholar
  45. 45.
    S. Miura, K. Ohya, Y. Ishikawa, Y. Fujii, H. Kikuchi, A. Fukuda, S. Mitsudo, M. Toda, in Abstracts of the 56th Annual Meetings of the Society of Electron Spin Science and Technology (SEST2017) (Tokyo, Japan, 2-4 November 2017) Paper PS67Google Scholar
  46. 46.
    B.W. Statt, W.N. Hardy, A.J. Berlinsky, E. Klein, J. Low Temp. Phys. 61, 471 (1985)ADSCrossRefGoogle Scholar
  47. 47.
    A.M. Prokhorov, V.B. Fedorov, Soviet Phys. JETP 16, 1489 (1963)ADSGoogle Scholar
  48. 48.
    T. Fujito, Bull. Chem. Soc. Jpn. 54, 3110 (1981)CrossRefGoogle Scholar
  49. 49.
    J. Krzystek, A. Sienkiewicz, L. Pardi, L.C. Brunel, J. Magn. Reson. 125, 207 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    D. Žilić, D. Pajić, M. Jurić, K. Molčanov, B. Rakvin, P. Planinić, K. Zadro, J. Magn. Reson. 207, 34 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    W. Voesch, M. Thiemann, D. Bothner, M. Dressel, M. Scheffler, Phys. Procedia 75, 503 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    G.B. Teitel’baum, E.G. Kharakhash’yan, S.Ya. Khlebnikov, A.G. Zenin, JETP Lett. 34, 555 (1981)ADSGoogle Scholar
  53. 53.
    T.F. Rosenbaum, R.F. Milligan, M.A. Paalanen, G.A. Thomas, R.N. Bhatt, W. Lin, Phys. Rev. B 27, 7509 (1983)ADSCrossRefGoogle Scholar
  54. 54.
    G. Feher, R.C. Fletcher, E.A. Gere, Phys. Rev. 100, 1784 (1955)ADSCrossRefGoogle Scholar
  55. 55.
    M. Date, Electron Spin Resonance (in Japanese) (Baifukan, Tokyo, 1978)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Y. Fujii
    • 1
  • Y. Ishikawa
    • 2
  • K. Ohya
    • 1
    • 6
  • S. Miura
    • 2
    • 7
  • Y. Koizumi
    • 1
  • A. Fukuda
    • 3
  • T. Omija
    • 1
  • S. Mitsudo
    • 1
  • T. Mizusaki
    • 1
  • A. Matsubara
    • 4
  • H. Yamamori
    • 5
  • T. Komori
    • 2
  • K. Morimoto
    • 2
    • 8
  • H. Kikuchi
    • 2
  1. 1.Research Center for Development of Far-Infrared Region, University of FukuiFukuiJapan
  2. 2.Department of Applied Physics, Graduate School of EngineeringUniversity of FukuiFukuiJapan
  3. 3.Department of PhysicsHyogo College of MedicineNishinomiyaJapan
  4. 4.Department of PhysicsKyoto UniversityKyotoJapan
  5. 5.Technical Division, School of EngineeringUniversity of FukuiFukuiJapan
  6. 6.KYOCERA CorporationKyotoJapan
  7. 7.Furukawa Electric Co., LtdTokyoJapan
  8. 8.Nidec CorporationKyotoJapan

Personalised recommendations