Skip to main content
Log in

Magic-Angle Spinning NMR and Molecular Mobility in Heterogeneous Systems

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magic-angle sample spinning (MAS) nuclear magnetic resonance (NMR) measurements are treated for heterogeneous systems with nanometer dimensions. An appreciable line narrowing in the MAS NMR spectra of the embedded molecules may be achieved also in the cases when the molecules still possess an appreciable local mobility. It appears that the MAS frequencies are of comparable order of magnitude as the frequencies which characterize the random molecular motional processes and which compete with MAS. It will be shown that this behavior may occur if inhomogeneous local magnetic fields due to susceptibility effects have a dominating influence on the widths and shapes of the resonance NMR lines. Properties of these local fields are described. Spectra simulations are carried for molecules embedded in these heterogeneous systems when the coherent averaging by MAS is superimposed by random local motions. This situation may occur for molecules contained in nanoporous solids and also for heterogeneous systems like membranes and biological tissues with flexible components like water, lipids, and small peptides. Several examples are treated which reveal advantages and limitations of these experiments and their theoretical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Engelhardt, D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, Chichester, 1987)

    Google Scholar 

  2. J.W. Hennel, J. Klinowski, in New Techniques in Solid-State NMR, Topics in Current Chemistry 246. ed. by J. Klinowski (Springer, New York, 2005), pp. 1–14

  3. E.R. Andrew, A. Bradbury, R.G. Eades, Nature 182, 1959 (1958)

    Article  Google Scholar 

  4. I.J. Lowe, Phys. Rev. Lett. 2, 285 (1959)

    Article  ADS  Google Scholar 

  5. J. Schaefer, E.-O. Stejskal, J. Am. Chem. Soc. 98, 1031 (1976)

    Article  Google Scholar 

  6. E. Lippmaa, M.A. Alla, T.J. Pehk, G. Engelhardt, J. Am. Chem. Soc. 100, 1929 (1978)

    Article  Google Scholar 

  7. D. Freude, M. Hunger, H. Pfeifer, W. Schwieger, Chem. Phys. Lett. 128, 62 (1986)

    Article  ADS  Google Scholar 

  8. D. Doskocilová, B. Schneider, Chem. Phys. Lett. 6, 381 (1970)

    Article  ADS  Google Scholar 

  9. B. Schneider, D. Doskocilová, J. Balka, J. Ruzicka, J. Magn. Reson. 37, 411 (1980)

    Google Scholar 

  10. D. Doskocilová, B. Schneider, Pure Appl. Chem. 54, 575 (1982)

    Article  Google Scholar 

  11. D. Michel, V. Rössiger, Z. Phys. Chem. Leipzig 252, 312 (1973)

    Google Scholar 

  12. U. Schwerk, D. Michel, M. Pruski, J. Magn. Reson. 119, 157 (1996)

    Article  ADS  Google Scholar 

  13. D.L. Van der Hart, Magnetic Susceptibility and High Resolution NMR of Liquids and Solids (Wiley, New York, 1996)

    Google Scholar 

  14. D.L. Van der Hart, W.L. Earl, A.N. Garroway, J. Magn. Reson. 44, 361 (1981)

    ADS  Google Scholar 

  15. A.N. Garroway, J. Magn. Reson. 48, 168 (1982)

    ADS  Google Scholar 

  16. U. Schwerk, D. Michel, Colloids Surf. A 115, 267 (1996)

    Article  Google Scholar 

  17. J. Roland, D. Michel, Magn. Reson. Chem. 38, 587 (2000)

    Article  Google Scholar 

  18. W. Böhlmann, D. Michel, J. Roland Magn. Reson. Chem. 38, S126 (1999)

    Article  Google Scholar 

  19. J. Roland, D. Michel, A. Pampel, in Magnetic Resonance in Colloid and Interface Science, ed. by J. Fraissard, O. Lapina. Proceedings of the NATO Advanced Research Workshop, (Kluwer, 2002), p. 83

  20. D. Michel, A. Pampel, J. Roland, J. Chem. Phys. 119, 9242 (2003)

    Article  ADS  Google Scholar 

  21. D. Michel, A. Pampel, W. Böhlmann, J. Roland, in Proceedings of the 14th International Zeolite Conference, Cape Town, South Africa 2004, ed. by E. van Steen, L.H. Callanan, M. Claeys, and C.T. O’Connor, p. 1746

  22. P.W. Anderson, P.R. Weiss, Rev. Mod. Phys. 25(1), 269 (1953)

    Article  ADS  Google Scholar 

  23. J. Hirschinger, Concept Magn. Reson. Part A 28(5), 307 (2006)

    Article  Google Scholar 

  24. J. Hirschinger, Solid State Nucl. Magn. Reson. 34(4), 210 (2008)

    Article  Google Scholar 

  25. N. Fatkullin, A. Gubaidullin, C. Mattea, S. Stapf, J. Chem. Phys. 137, 224907 (2012)

    Article  ADS  Google Scholar 

  26. M.F. Cobo, D. Reichert, K. Saalwächter, E.R. Azevedo, J. Magn. Reson. 248, 115 (2014)

    Article  ADS  Google Scholar 

  27. M. Yon, V. Sarou-Kanian, U. Scheler, J.-M. Bouler, B. Bujoli, D. Massiot, F. Fayon, Sci. Rep. 7, 8224 (2017). https://doi.org/10.1038/s41598-017-08458-0

    Article  ADS  Google Scholar 

  28. J.A. Osborn, Phys. Rev. 67, 351 (1945)

    Article  ADS  Google Scholar 

  29. D. Michel, W. Böhlmann, J. Roland, S. Mulla-Osman, Lect. Notes Phys. 634, 217 (2004). (in particular see pages 221–227)

    Article  ADS  Google Scholar 

  30. D. Fenzke, B.C. Gerstein, H. Pfeifer, J. Magn. Reson. 98, 469 (1992)

    ADS  Google Scholar 

  31. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961) Chapter X, part C, eq. (35)

  32. A. Bothner-By, C.N. Colin, H. Günther, J. Am. Chem. Soc. 84, 2748 (1962)

    Article  Google Scholar 

  33. Ö.F. Erdem, PhD. Thesis, Leipzig University, 2008

  34. Ö.F. Erdem, D. Michel, J. Phys. Chem. B 109, 12054 (2005)

    Article  Google Scholar 

  35. Ö.F. Erdem, D. Michel, Appl. Magn. Reson. 34, 135 (2008)

    Article  Google Scholar 

  36. F. Volke, A. Pampel, Biophys. J. 68, 214 (1995)

    Article  Google Scholar 

  37. L.L. Holte, K. Gawrisch, Biochemistry 36, 4669 (1997)

    Article  Google Scholar 

  38. A. Pampel, R. Reszka, D. Michel, Chem. Phys. Lett. 357, 131 (2002)

    Article  ADS  Google Scholar 

  39. H. Schröder, J. Comb. Chem. 6, 741 (2003)

    Google Scholar 

  40. H.C. Gaede, K. Gawrisch, Magn. Reson. Chem. 42, 115 (2004)

    Article  Google Scholar 

  41. A. Pampel, J. Kärger, D. Michel, Chem. Phys. Lett. 379, 555 (2003)

    Article  ADS  Google Scholar 

  42. A. Pampel, K. Zick, H. Glauner, F. Engelke, J. Am. Chem. Soc. 126(31), 9534 (2004)

    Article  Google Scholar 

  43. A. Pampel, F. Volke, Lect. Notes Phys. 634, 439 (2004)

    Article  ADS  Google Scholar 

  44. A. Pampel, Diffus. Fundam. 2, 128.1–128.2 (2005)

    Google Scholar 

  45. A. Pampel, M. Fernandez, D. Freude, J. Kärger, Chem. Phys. Lett. 407, 53 (2005)

    Article  ADS  Google Scholar 

  46. A. Pampel, F. Engelke, P. Galvosas, C. Krause, F. Stallmach, D. Michel, J. Kärger, Microporous Mesoporous Mater. 105, 124 (2007)

    Article  Google Scholar 

  47. M. Fernandez, A. Pampel, R. Takahashi, S. Sato, D. Freude, J. Kärger, Phys. Chem. Chem. Phys. 10, 4165–4171 (2008)

    Article  Google Scholar 

  48. E.E. Romanova, F. Grinberg, A. Pampel, J. Kärger, D. Freude, J. Magn. Reson. 196, 110 (2009)

    Article  ADS  Google Scholar 

  49. M. Sharifi, M. Wark, D. Freude, J. Haase, Microporous Mesoporous Mater. 156, 80 (2012)

    Article  Google Scholar 

  50. N. Dvoyashkina, C.F. Seidler, M. Wark, D. Freude, J. Haase, Microporous Mesoporous Mater. 255, 140 (2018)

    Article  Google Scholar 

  51. N. Dvoyaskina, D. Freude, A.G. Stepanov, W. Böhlmann, R. Krishna, J. Kärger, J. Haase, Microporous Mesoporous Mater. 257, 128 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Professor Juergen Haase (Leipzig University) for his permanent support, Professor Dieter Freude (Leipzig) for valuable comments, and Professor Vladimir I. Chizhik (St. Petersburg State University) for his great stimulation to prepare and publish this work. The good cooperation with Mrs. Dr. Özlen Ferruh Erdem (METU Ankara) and her contributions are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Michel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, D. Magic-Angle Spinning NMR and Molecular Mobility in Heterogeneous Systems. Appl Magn Reson 49, 537–552 (2018). https://doi.org/10.1007/s00723-018-0997-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-0997-y

Navigation