Applied Magnetic Resonance

, Volume 48, Issue 11–12, pp 1273–1300 | Cite as

High-Bandwidth Q-Band EPR Resonators

  • Rene Tschaggelar
  • Frauke D. Breitgoff
  • Oliver Oberhänsli
  • Mian Qi
  • Adelheid Godt
  • Gunnar JeschkeEmail author
Original Paper


The emerging technology of ultra-wide-band spectrometers in electron paramagnetic resonance—enabled by recent technological advances—provides the means for new experimental schemes, a broader range of samples, and huge gains in measurement time. Broadband detection does, however, require that the resonator provides sufficient bandwidth and, despite resonator compensation schemes, excitation bandwidth is ultimately limited by resonator bandwidth. Here, we present the design of three resonators for Q-band frequencies (33–36 GHz) with a larger bandwidth than what was reported so far. The new resonators are of a loop-gap type with 4–6 loops and were designed for 1.6 mm sample tubes to achieve higher field homogeneity than in existing resonators for 3 mm samples, a feature that is beneficial for precise spin control. The loop-gap design provides good separation of the B 1 and E field, enabling robust modes with powder samples as well as with frozen water samples as the resonant behavior is largely independent of the dielectric properties of the samples. Experiments confirm the trends in bandwidth and field strength and the increased B 1 field homogeneity predicted by the simulations. Variation of the position of the coupling rod allows the adjustment of the quality factor Q and thus the bandwidth over a broad range. The increased bandwidth of the loop-gap resonators was exploited in double electron–electron resonance measurements of a Cu(II)-PyMTA ruler to yield significantly higher modulation depth and thus higher sensitivity.



We thank Andrin Doll and Stephan Pribitzer for helpful discussions and resonator tests on other applications. We are grateful to an anonymous reviewer for providing a derivation of Eq. (10) and correcting an error in constants in the original form of this equation. Funding by the Swiss National Science Foundation (grant no. 200020–169057) and by the German Science Foundation (DFG; SPP1601, GO 555/6-2) supported this work.

Supplementary material

723_2017_956_MOESM1_ESM.pdf (5.6 mb)
Supplementary material 1 (PDF 5748 kb)


  1. 1.
    C. Poole Jr., Electron Spin Rresonance—A Comprehensive Treatise on Experimental Techniques (Dover Publications Inc., Mineola, New York, 1983)Google Scholar
  2. 2.
    W. Froncisz, J.S. Hyde, J. Magn. Reson. 47, 515–521 (1982)ADSGoogle Scholar
  3. 3.
    W.M. Walsh, L.W. Rupp, Rev. Sci. Instrum. 57, 2278–2279 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    A. Raitsimring, A. Astashkin, J.H. Enemar, A. Blank, Y. Twig, Y. Song, T.J. Meade, Appl. Magn. Reson. 42, 441–452 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Forrer, I. García-Rubio, R. Schuhmam, R. Tschaggelar, J. Harmer, J. Magn. Reson. 190, 280–291 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    R. Tschaggelar, B. Kasumaj, M.G. Santangelo, J. Forrer, P. Leger, H. Dube, F. Diederich, J. Harmer, R. Schuhmann, I. García-Rubio, G. Jeschke, J. Magn. Reson. 200, 81–87 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Polyhach, E. Bordignon, R. Tschaggelar, S. Gandra, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 14, 10762 (2012)CrossRefGoogle Scholar
  8. 8.
    P.E. Spindler, P. Schöps, W. Kallies, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 280, 30–45 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    A. Doll, G. Jeschke, J. Magn. Reson. 280, 46–62 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A. Tannus, M. Garwood, J. Magn. Reson. A 120, 133–137 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    A. Doll, S. Pribitzer, R. Tschaggelar, G. Jeschke, J. Magn. Reson. 230, 27–39 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. Doll, G. Jeschke, J. Magn. Reson. 246, 18–26 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    A. Doll, M. Qi, S. Pribitzer, N. Wili, M. Yulikov, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 17, 7334–7344 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Jeschke, S. Pribitzer, A. Doll, J. Phys. Chem. B 119, 13570–13582 (2015)CrossRefGoogle Scholar
  15. 15.
    R.L. Wood, W. Froncisz, J.S. Hyde, J. Magn. Reson. 58, 243–253 (1984)ADSGoogle Scholar
  16. 16.
    R.R. Mett, J.W. Sidabras, J.S. Hyde, Appl. Magn. Reson. 35, 285–318 (2008)CrossRefGoogle Scholar
  17. 17.
    G.A. Rinard, R.W. Quine, S.S. Eaton, G.R. Eaton, W. Froncisz, J. Magn. Reson. 108, 71–81 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    W. Froncisz, T. Oles, J.S. Hyde, Rev. Sci. Instrum. 57, 1095–1099 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    B. Simovič, P. Studerus, S. Gustavsson, R. Leturcq, K. Ensslin, R. Schuhmann, J. Forrer, A. Schweiger, Rev. Sci. Instrum. 77, 064702 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M. Mehdizadeh, T.K. Ishii, J.S. Hyde, W. Froncisz, IEEE Trans. Microw. Theory Tech. 31, 1059–1064 (1983)CrossRefGoogle Scholar
  21. 21.
    W. Piasecki, W. Froncisz, W.L. Hubbell, J. Magn. Reson. 134, 36–43 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    R.R. Mett, J.W. Sidabras, J.S. Hyde, Appl. Magn. Reson. 31, 573–589 (2007)CrossRefGoogle Scholar
  23. 23.
    J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Rev. Sci. Instrum. 78, 034701 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    M. Qi, M. Hülsmann, A. Godt, J. Org. Chem. 81, 2549–2571 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Dalaloyan, M. Qi, S. Ruthstein, S. Vega, A. Godt, A. Feintuch, D. Goldfarb, Phys. Chem. Chem. Phys. 17, 18464–18476 (2015)CrossRefGoogle Scholar
  26. 26.
    G. Jeschke, Annu. Rev. Phys. Chem. 63, 419–446 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    M. Ji, S. Ruthstein, S. Saxena, Acc. Chem. Res. 47, 688–695 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Garwood, L. DelaBarre, J. Magn. Reson. 153, 155–177 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    T. Wiegand, D. Lacabanne, K. Keller, R. Cadalbert, L. Lecoq, M. Yulikov, L. Terradot, G. Jeschke, B.H. Meier, A. Böckmann, Angew. Chem. Int. Ed. 56, 3369–3373 (2017)CrossRefGoogle Scholar
  31. 31.
    G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)CrossRefGoogle Scholar
  32. 32.
    A.M. Bowen, C.E. Tait, C.R. Timmel, J.R. Harmer, in Structural Information from Spin-Llabels and Intrinsic Paramagnetic Centres in the Biosciences, vol. 152, ed. by C.R. Timmel, J.R. Harmer (Springer, Berlin, Heidelberg, 2013), pp. 283–327Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Laboratory of Physical ChemistryETH ZurichZurichSwitzerland
  2. 2.Faculty of Chemistry and Center for Molecular Materials (CM2)Bielefeld UniversityBielefeldGermany

Personalised recommendations