Applied Magnetic Resonance

, Volume 48, Issue 11–12, pp 1185–1204 | Cite as

EPR Uniform Field Signal Enhancement by Dielectric Tubes in Cavities

  • James S. HydeEmail author
  • Richard R. Mett
Original Paper


The dielectric tube resonator (DTR) for electron paramagnetic resonance spectroscopy is introduced. It is defined as a metallic cylindrical TE011 microwave cavity that contains a dielectric tube centered on the axis of the cylinder. Contour plots of dimensions of the metallic cylinder to achieve resonance at 9.5 GHz are shown for quartz, sapphire, and rutile tubes as a function of wall thickness and average radius. These contour plots were developed using analytical equations and confirmed by finite-element modeling. They can be used in two ways: design of the metallic cylinder for use at 9.5 GHz that incorporates a readily available tube such as a sapphire tube intended for NMR and design of a custom procured tube for optimized performance for specific sample-size constraints. The charts extend to the limiting condition where the dielectric fills the tube. However, the structure at this limit is not a dielectric resonator due to the metal wall and does not radiate. In addition, the uniform field (UF) DTR is introduced. Development of the UF resonator starting with a DTR is shown. The diameter of the tube remains constant along the cavity axis, and the diameter of the cylindrical metallic enclosure increases at the ends of the cavity to satisfy the uniform field condition. This structure has advantages over the previously developed UF TE011 resonators: higher resonator efficiency parameter Λ, convenient overall size when using sapphire tubes, and higher quality data for small samples. The DTR and UF DTR structures fill the gap between free space and dielectric resonator limits in a continuous manner.



Research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number P41EB001980. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    R.C. Rempel, C.E. Ward, R.T. Sullivan, M.W. St. Clair, H.E. Weaver, “Gyromagnetic resonance method and apparatus,” U.S. Pat. 3,122,703 (1964)Google Scholar
  2. 2.
    J.S. Hyde, G.R. Eaton, S.S. Eaton, Concepts Magn Reson. Part A Bridg. Educ. Res. 28A, 85–86 (2006)Google Scholar
  3. 3.
    L.G. Stoodley, J. Electron Control. 14, 531–546 (1963)CrossRefGoogle Scholar
  4. 4.
    J.S. Hyde, J. Chem. Phys. 43, 806–1818 (1965)CrossRefGoogle Scholar
  5. 5.
    J.S. Hyde, “Microwave cavity resonator”, U.S. Pat. 3,250,985 (1966)Google Scholar
  6. 6.
    W.M. Walsh Jr., L.W. Rupp Jr., Rev. Sci. Insrum. 57, 2078–2279 (1986)CrossRefGoogle Scholar
  7. 7.
    R.W. Dykstra, G.W. Markham, J. Magn. Reson. 69, 350–355 (1986)ADSGoogle Scholar
  8. 8.
    A. Sienkiewicz, K. Qu, Rev. Sci. Instrum. 65, 68–74 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    M. Jaworski, A. Sienkiewicz, C.P. Scholes, J. Magn. Reson. 1969–1992(124), 87–96 (1997)CrossRefGoogle Scholar
  10. 10.
    I.N. Geifman, I.S. Golovina, V.I. Kofman, R.E. Zusmanov, Ferroelectrics 234, 81 (1999)CrossRefGoogle Scholar
  11. 11.
    A. Sienkiewicz, M. Jaworski, B.G. Smith, P.G. Fajer, C.P. Scholes, J. Magn. Reson. 143, 144–152 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Y.E. Nesmelov, J.T. Surek, D.D. Thomas, J. Magn. Reson. 153, 7–14 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    A. Blank, E. Stavitski, H. Levanon, F. Gubaydullin, Rev. Sci. Instrum. 74, 2853–2859 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S.M. Mattar, A.H. Emwas, Chem. Phys. Lett. 368, 724–731 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    I.N. Geifman, I.S. Golovina, Concepts Magn. Reson. 26B, 46 (2005)CrossRefGoogle Scholar
  16. 16.
    A. Sienkiewicz, B. Vileno, S. Garaj, M. Jaworski, L. Forró, J. Magn. Reson. 177, 261–273 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    I.S. Golovina, I.N. Geifman, A. Belous, J. Magn. Reson. 195, 52–59 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    R.R. Mett, J.W. Sidabras, I.S. Golovina, J.S. Hyde, Rev. Sci. Instrum. 79, 094702 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S.M. Mattar, S.Y. Elnaggar, J. Magn. Reson. 209, 174–182 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Raitsimring, A. Astashkin, J.H. Enemark, A. Blank, Y. Twig, Y. Song, T.J. Meade, Appl. Magn. Reson. 42, 441–452 (2012)CrossRefGoogle Scholar
  21. 21.
    S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 238, 1–7 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 242, 57–66 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 245, 50–57 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S.Y. Elnaggar, R.J. Tervo, S.M. Mattar, J. Appl. Phys. 118, 194901 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    H.Y. Yee, I.E.E.E. Trans, Microwave Theory Tech. 13, 256 (1965)CrossRefGoogle Scholar
  26. 26.
    D.M. Pozar, Microwave Engineering, 4th edn. (Addison-Wesley, New York, 1990), secs. 7.5, 7.8Google Scholar
  27. 27.
    M.W. Pospieszalski, I.E.E.E. Trans, Microwave Theory Tech. 27, 233 (1979)CrossRefGoogle Scholar
  28. 28.
    F.J. Rosenbaum, Rev. Sci. Instrum. 35, 1550–1554 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    J.S. Hyde, “EPR spectrometer resonant cavity”, U.S. Pat. 3,878,454 (1975)Google Scholar
  30. 30.
    J.S. Hyde, in Handbook of Microwave Technology, vol. 2, ed. by T.K. Ishii (Academic Press, New York, 1995), pp. 365–402Google Scholar
  31. 31.
    J.S. Hyde, W. Froncisz, in Advanced EPR: Applications in Biology and Biochemistry, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989), pp. 277–306Google Scholar
  32. 32.
    G. Feher, Bell Syst. Tech. J. 36, 450–483 (1956)Google Scholar
  33. 33.
    W. Froncisz, J.S. Hyde, J. Magn. Reson. 47, 515–521 (1982)ADSGoogle Scholar
  34. 34.
    R.R. Mett, W. Froncisz, J.S. Hyde, Rev. Sci. Instrum. 72, 4188–4200 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    J.R. Anderson, R.R. Mett, J.S. Hyde, Rev. Sci. Instrum. 73, 3027–3037 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    J.S. Hyde, R.R. Mett, J.R. Anderson, Rev. Sci. Instrum. 73, 4003–4009 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    J.S. Hyde, R.R. Mett, W. Froncisz, J.R. Anderson, “Cavity resonator for electron paramagnetic resonance spectroscopy having axially uniform field”, U.S. Patent 6,828,789 (2004)Google Scholar
  38. 38.
    R.R. Mett, J.W. Sidabras, J.S. Hyde, Appl. Magn. Reson. 31, 571–587 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965), sec. 8.04Google Scholar
  40. 40.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), sec. 8.3Google Scholar
  41. 41.
    A.R. Von Hippel, Dielectric Materials and Applications (Artech House, Boston, 1954)Google Scholar
  42. 42.
    M.E. Tobar, J. Krupka, E.N. Ivanov, R.A. Woode, J. Appl. Phys. 83, 1604–1609 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    W.J. Ellison, J. Phys. Chem. Ref. Data 36(1), 1–18 (2007)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    J.W. Sidabras, R.R. Mett, J.S. Hyde, J. Magn. Reson. 172, 333–341 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    J.S. Hyde, J.W. Sidabras, R.R. Mett, Resonators for multifrequency EPR of spin labels [chapter 5.2], in Multifrequency Electron Paramagnetic Resonance, Theory and Applications, ed. by S. Misra (Wiley, Berlin, 2011), pp. 244–270Google Scholar
  46. 46.
    Saint-Gobain Crystals. EFG Sapphire Tubes. Milford, NH: n.p. (2006)Google Scholar
  47. 47.
    J.S. Hyde, J. Chem. Phys. 43, 1806 (1965)ADSCrossRefGoogle Scholar
  48. 48.
    R.R. Mett, J.S. Hyde, Rev. Sci. Instrum. 76, 014702 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    R.R. Mett, J.R. Anderson, J.W. Sidabras, J.S. Hyde, Rev. Sci. Instrum. 76, 094702 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    R.R. Mett, J.W. Sidabras, J.S. Hyde, Appl. Magn. Reson. 35, 285–318 (2008)CrossRefGoogle Scholar
  51. 51.
    J.S. Hyde, J. Gajdzinski, Rev. Sci. Instrum. 59, 1352 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    J.W. Sidabras, T. Sarna, R.R. Mett, J.S. Hyde, J. Magn. Reson. 282, 129–135 (2017)CrossRefGoogle Scholar
  53. 53.
    L. Mainali, J.W. Sidabras, T.G. Camenisch, J.J. Ratke, M. Raguz, J.S. Hyde, W.K. Subczynski, App. Magn. Reson. 45, 1343–1358 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of BiophysicsMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of Physics and ChemistryMilwaukee School of EngineeringMilwaukeeUSA

Personalised recommendations