Visualization of Digestion Process Using 19F MRI

  • Dmitry V. Volkov
  • Mikhail V. Gulyaev
  • Alexey V. Kosenkov
  • Denis N. Silachev
  • Nikolay V. Anisimov
  • Alexander P. Chernyaev
  • Yury A. Pirogov
Original Paper

Abstract

Tracing parameters of digestion process could help in setting more accurate diagnosis for patients with gastrointestinal diseases. For this purpose, we suggest a new type of food tracer. By soaking liquid perfluorocarbon in dry rodent food, each step of digestion process can be visualized on 19F-magnetic resonance (MR) images. Compared with liquid contrast agents, food is able to fill organs of gastrointestinal tract more tightly and yield properties of digestion process. However, rats, participating in such study, should be set on a water diet before experiment. 19F-MR images are obtained with volume scanning (3D) pulse sequence based on multiple spin echo methodic with minimal time intervals between echoes. Gastrointestinal 19F-magnetic resonance imaging (MRI) visualization is a harmless real-time tracking method which could be easily transferred into clinical practice. Moreover, it does not apply ionizing radiation, so in the combination with reference 1H-MRI this method could become very useful in treatment process assessment.

References

  1. 1.
    J.H. Kim, S.H. Park, H.S. Hong, Y.H. Auh, Abdom. Imaging 30(5), 509–517 (2005)CrossRefGoogle Scholar
  2. 2.
    M.H. Liedenbaum, H.W. Venema, J. Stoker, Eur. Radiol. 18(10), 2222–2230 (2008)CrossRefGoogle Scholar
  3. 3.
    Z. Wang, J.C. Lin, W. Mao, W. Liu, M.B. Smith, C.M. Collins, J. Magn. Reson. Imaging 26(2), 437–441 (2007)CrossRefGoogle Scholar
  4. 4.
    P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Chem. Rev. 99(9), 2293–2352 (1999)CrossRefGoogle Scholar
  5. 5.
    I. Tirotta, V. Dichiarante, C. Pigliacelli, G. Cavallo, G. Terraneo, F.B. Bombelli, P. Metrangolo, G. Resnati, Chem. Rev. 115(2), 1106–1129 (2014)CrossRefGoogle Scholar
  6. 6.
    R.F. Mattrey, P.C. Hajek, V.M. Gylys-Morin, L.L. Baker, J. Martin, D.C. Long, D.M. Long, Am. J. Roentgenol. 148(6), 1259–1263 (1987)CrossRefGoogle Scholar
  7. 7.
    R.F. Mattrey, M.A. Trambert, J.J. Brown, S.W. Young, J.N. Bruneton, G.E. Wesbey, Z.N. Balsara, Radiology 191(3), 841–848 (1994)CrossRefGoogle Scholar
  8. 8.
    C. Jacoby, S. Temme, F. Mayenfels, N. Benoit, M.P. Krafft, R. Schubert, J. Schrader, U. Flögel, NMR Biomed. 27(3), 261–271 (2014)CrossRefGoogle Scholar
  9. 9.
    G.R. Ivanitsky, S.I. Vorob’ev, Vestnik RAS 67(11), 998–1008 (1997)Google Scholar
  10. 10.
    D.V. Volkov, M.V. Gulyaev, O.S. Pavlova, N.V. Anisimov, Yu.A. Pirogov, Tekhn. Zhiv. Sistem 13(7), 41–47 (2016)Google Scholar
  11. 11.
    National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Guide for the Care and Use of Laboratory Animals, 8th edn. (The National Academies Press, Washington, 2011), p. 220Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.M.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations