Advertisement

Applied Magnetic Resonance

, Volume 48, Issue 11–12, pp 1263–1272 | Cite as

Q-Band Loop-Gap Resonator for EPR Applications with Broadband-Shaped Pulses

  • Vasyl Denysenkov
  • Philipp van Os
  • Thomas F. PrisnerEmail author
Original Paper
  • 292 Downloads

Abstract

Recently, Q-band-pulsed electron paramagnetic resonance spectroscopy has strongly advanced its performance by the introduction of high-power microwave amplifiers and the use of shaped pulses. For such applications, the resonator Q value has to be low enough to achieve sufficient bandwidth for short microwave pulses and to reduce the ring-down time after the pulses. However, a low Q value reduces the detection sensitivity as well as the conversion efficiency of the microwave input power to the magnetic field strength at the sample position. Therefore, the resonator Q value has to be optimized for a given microwave input power and specific application. We designed a three-loop/two-gap resonator using CST Microwave Studio for such applications, and tested its performance in comparison with a standard Bruker D2 Q-band microwave resonator by accomplishing broadband SIFTER experiments on a nitroxide model compound.

Notes

Acknowledgements

We thank the German Research Society (DFG) for financial support via the Priority Program New Frontiers in Sensitivity for EPR Spectroscopy (SPP 1601).

References

  1. 1.
    P.P. Borbat, H.S. McHaourab, J.H. Freed, J. Am. Chem. Soc. 124, 5304–5314 (2002)CrossRefGoogle Scholar
  2. 2.
    O. Schiemann, T.F. Prisner, Q. Rev, Biophys. 40, 1–53 (2007)Google Scholar
  3. 3.
    G. Jeschke, Y. Polyhach, Phys. Chem. Chem. Phys. 9, 1895–1910 (2007)CrossRefGoogle Scholar
  4. 4.
    G. Jeschke, Annu. Rev. Phys. Chem. 63, 419–446 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Polyhach, E. Bordignon, R. Tschaggelar, S. Gandra, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 14, 10762–10773 (2012)CrossRefGoogle Scholar
  6. 6.
    P.E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T.E. Skinner, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 218, 49–58 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A. Doll, S. Pribitzer, R. Tschaggelar, G. Jeschke, J. Magn. Reson. 230, 27–39 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    P.E. Spindler, S.J. Glaser, T.E. Skinner, T.F. Prisner, Angew. Chem. Int. Ed. 52, 3425–3429 (2013)CrossRefGoogle Scholar
  9. 9.
    T. Kaufmann, T.J. Keller, J.M. Franck, R.P. Barnes, S.J. Glaser, J.M. Martinis, S.G. Han, J. Magn. Reson. 235, 95–108 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A. Doll, G. Jeschke, J. Magn. Reson. 246, 18–26 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    A. Doll, M.A. Qi, N. Wili, S. Pribitzer, A. Godt, G. Jeschke, J. Magn. Reson. 259, 153–162 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    T.F. Segawa, A. Doll, S. Pribitzer, G. Jeschke, J. Chem. Phys. 143, 044201 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    P. Schöps, P.E. Spindler, A. Marko, T.F. Prisner, J. Magn. Reson. 250, 55–62 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Franck, R.P. Barnes, T.J. Keller, T. Kaufmann, S. Han, J. Magn. Reson. 261, 199–204 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    A. Doll, M.A. Qi, S. Pribitzer, N. Wili, M. Yulikov, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 17, 7334–7344 (2015)CrossRefGoogle Scholar
  16. 16.
    P.E. Spindler, I. Waclawska, B. Endeward, J. Plackrneyer, C. Ziegler, T.F. Prisner, J. Phys. Chem. Lett. 6, 4331–4335 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Doll, G. Jeschke, Phys. Chem. Chem. Phys. 18, 23111–23120 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Schöps, J. Plackmeyer, A. Marko, J. Magn. Reson. 269, 70–77 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A. Doll, M. Qi, A. Godt, G. Jeschke, J. Magn. Reson. 273, 73–82 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    C.E. Tait, S. Stoll, Phys. Chem. Chem. Phys. 18, 18470–18485 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Doll, G. Jeschke, Phys. Chem. Chem. Phys. 19, 1039–1053 (2017)CrossRefGoogle Scholar
  22. 22.
    P.E. Spindler, P. Schöps, A.M. Bowen, B. Endeward, T.F. Prisner, eMagRes (Wiley, New York, 2016)Google Scholar
  23. 23.
    P.E. Spindler, P. Schöps, W. Kallies, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 280, 30–45 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    A. Doll, G. Jeschke, J. Magn. Reson. 280, 46–62 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    C.E. Tait, S. Stoll, J. Magn. Reson. 277, 36–44 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    F.D. Breitgoff, J. Soetbeer, A. Doll, G. Jeschke, Y.O. Polyhach, Phys. Chem. Chem. Phys. 19, 15766–15779 (2017)CrossRefGoogle Scholar
  27. 27.
    W. Froncisz, J.S. Hyde, J. Magn. Reson. 47, 515–521 (1982)ADSGoogle Scholar
  28. 28.
    R.L. Wood, W. Froncisz, J.S. Hyde, J. Magn. Reson. 58, 243–253 (1984)ADSGoogle Scholar
  29. 29.
    J. Hyde, W. Froncisz, in Advanced EPR: Applications in Biology and Biochemistry, Chap. 7, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989)Google Scholar
  30. 30.
    B.T. Ghim, G.A. Rinard, R.W. Quine, S.S. Eaton, G.R. Eaton, J. Magn. Reson. Ser. A 120, 72–76 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Rev. Sci. Instrum. 78, 034701 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J. Forrer, I. García-Rubio, R. Schuhmam, R. Tschaggelar, J. Harmer, J. Magn. Reson. 190, 280–291 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    R. Narkowicz, D. Suter, I. Niemeyer, Rev. Sci. Instrum. 79, 084702 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Twig, E. Suhovoy, A. Blank, Rev. Sci. Instrum. 81, 104703 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S. Petryakov, A. Samouilov, E. Kesselring, T. Wasowicz, G.L. Caia, J.L. Zweier, J. Magn. Reson. 188, 68–73 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    O. Dobbert, T. Prisner, K.P. Dinse, J. Magn. Reson. 70, 173–175 (1996)ADSGoogle Scholar
  37. 37.
    P. Hofer, A. Grupp, H. Nebenfuhr, M. Mehring, Chem. Phys. Lett. 132, 279–282 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    A.D. Milov, K.M. Salikhov, M.D. Shirov, Fiz. Tverd. Tela 23, 975–982 (1981)Google Scholar
  39. 39.
    M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    P.P. Borbat, J.H. Freed, Chem. Phys. Lett. 313, 145–154 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    G. Jeschke, M. Pannier, A. Godt, H.W. Spiess, Chem. Phys. Lett. 331, 243–252 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    S. Milikisyants, F. Scarpelli, M.G. Finiguerra, M. Ubbink, M. Huber, J. Magn. Reson. 201, 48–56 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    V.V. Kurshev, A.M. Raitsimring, Y.D. Tsvetkov, J. Magn. Reson. 81, 441–454 (1989)ADSGoogle Scholar
  44. 44.
    N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, S.J. Glaser, J. Magn. Reson. 172, 296–305 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    D. Margraf, B.E. Bode, A. Marko, O. Schiemann, T.F. Prisner, Mol. Phys. 105, 2153–2160 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    M.S. Silver, R.I. Joseph, D.I. Hoult, Phys. Rev. A 31, 2753–2755 (1985)ADSCrossRefGoogle Scholar
  47. 47.
    E. Kupce, R. Freeman, J. Magn. Reson. Series A 115, 273–276 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations