Applied Magnetic Resonance

, Volume 48, Issue 11–12, pp 1375–1397 | Cite as

ELDOR-detected NMR at Q-Band

  • Thilo Hetzke
  • Alice M. Bowen
  • Thomas F. Prisner
Original Paper


In recent years, electron–electron double resonance detected nuclear magnetic resonance (EDNMR) has gained considerable attention as a pulsed electron paramagnetic resonance technique to probe hyperfine interactions. Most experiments published so far were performed at W-band frequencies or higher, as at lower frequencies detection of weakly coupled low-γ nuclei is hampered by the presence of a central blind spot, which occurs at zero frequency. In this article we show that EDNMR measurements and a meaningful data analysis is indeed possible at intermediate microwave frequencies (Q-band, 34 GHz), once experimental parameters have been optimized. With highly selective detection pulses and Gaussian shaped electron–electron double resonance (ELDOR) pulses it is possible to detect low-γ nuclei coupled to paramagnetic Mn2+. Weakly coupled 14N resonances, which are separated from the zero frequency by only 2.8 MHz, were readily detected. In systems where different spin active nuclei are coupled to the electron spin, particular care has to be taken when using higher powered ELDOR pulses, as combination frequencies from the two nuclei (∆m S = ±1, ∆m I,1 = ±1, ∆m I,2 = ±1) can lead to severe line broadening and complicated EDNMR spectra. We also compare the EDNMR spectra of 13C-labeled Mn–DOTA to 13C-Mims electron–nuclear double resonance to get a better insight into the similarities and differences in the results of the two techniques for 13C hyperfine coupling.



This work was supported by the Deutsche Forschungsgemeinschaft (CRC 902—Molecular Principles of RNA-based Regulation). AMB acknowledges the Goethe International (GOIN) postdoctoral fellowship program and the Royal Society—EPSRC Dorothy Hodgkin fellowship program for generous support. We are grateful to Prof. Christiane Timmel and Dr William Myers at the Centre of Advanced Electron Spin Resonance (CAESR), Oxford University for access to their facilities for some of the aforementioned experiments.


  1. 1.
    P. Schosseler, T. Wacker, A. Schweiger, Chem. Phys. Lett. 224, 319 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    G. Jeschke, H.W. Spiess, Chem. Phys. Lett. 293, 9 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    H. Mino, T. Ono, Appl. Magn. Reson. 23, 571 (2003)CrossRefGoogle Scholar
  4. 4.
    L. Kulik, B. Epel, J. Messinger, W. Lubitz, Photosynth. Res. 84, 347 (2005)CrossRefGoogle Scholar
  5. 5.
    N. Cox, W. Lubitz, A. Savitsky, Mol. Phys. 111, 2788 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    N. Cox, A. Nalepa, M. E. Pandelia, W. Lubitz, A. Savitsky, in Methods Enzymol., 1st edn. (Elsevier Inc., 2015), pp. 211–249Google Scholar
  7. 7.
    D. Goldfarb, eMagRes 6, 101 (2017)CrossRefGoogle Scholar
  8. 8.
    N. Cox, A. Nalepa, W. Lubitz, A. Savitsky, J. Magn. Reson. 280, 63 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    S. Un, Inorg. Chem. 52, 3803 (2013)CrossRefGoogle Scholar
  10. 10.
    E.M. Bruch, M.T. Warner, S. Thomine, L.C. Tabares, S. Un, J. Phys. Chem. B 119, 13515 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Un, E.M. Bruch, Inorg. Chem. 54, 10422 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Potapov, B. Epel, D. Goldfarb, J. Chem. Phys. 128, 052320/1–052320/10 (2008)Google Scholar
  13. 13.
    M. Florent, I. Kaminker, V. Nagarajan, D. Goldfarb, J. Magn. Reson. 210, 192 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    I. Kaminker, T.D. Wilson, M.G. Savelieff, Y. Hovav, H. Zimmermann, Y. Lu, D. Goldfarb, J. Magn. Reson. 240, 77 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    M. Ramirez Cohen, N. Mendelman, M. Radoul, T.D. Wilson, M.G. Savelieff, H. Zimmermann, I. Kaminker, A. Feintuch, Y. Lu, D. Goldfarb, Inorg. Chem. 56, 6163 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Rapatskiy, N. Cox, A. Savitsky, W.M. Ames, J. Sander, M.M. Nowaczyk, M. Rögner, A. Boussac, F. Neese, J. Messinger, W. Lubitz, J. Am. Chem. Soc. 134, 16619 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Nalepa, K. Möbius, W. Lubitz, A. Savitsky, J. Magn. Reson. 242, 203 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M. Fittipaldi, I. García-Rubio, F. Trandafir, I. Gromov, A. Schweiger, A. Bouwen, S. Van Doorslaer, J. Phys. Chem. B 112, 3859 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Zamani, V. Meynen, A.-M. Hanu, M. Mertens, E. Popovici, S. Van Doorslaer, P. Cool, Phys. Chem. Chem. Phys. 11, 5823 (2009)CrossRefGoogle Scholar
  20. 20.
    N.V. Nagy, S. Van Doorslaer, T. Szabó-Plánka, S. Van Rompaey, A. Hamza, F. Fülöp, G.K. Tóth, A. Rockenbauer, Inorg. Chem. 51, 1386 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Flores, A.G. Agrawal, M. Van Gastel, W. Gärtner, W. Lubitz, J. Am. Chem. Soc. 130, 2402 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Van Doorslaer, E. Vinck, Phys. Chem. Chem. Phys. 9, 4620 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Aliabadi, R. Zaripov, K. Salikhov, V. Voronkova, E. Vavilova, M.A. Abdulmalic, T. Rueffer, B. Buechner, V. Kataev, J. Phys. Chem. B 119, 13762 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)Google Scholar
  25. 25.
    B. Bleaney, R.S. Rubins, Proc. Phys. Soc. 77, 103 (1961)ADSCrossRefGoogle Scholar
  26. 26.
    E. Meirovitch, R. Poupko, J. Phys. Chem. 82, 1920 (1978)CrossRefGoogle Scholar
  27. 27.
    O. Schiemann, R. Carmieli, D. Goldfarb, Appl. Magn. Reson. 31, 543 (2007)CrossRefGoogle Scholar
  28. 28.
    K. Keller, M. Zalibera, M. Qi, V. Koch, J. Wegner, H. Hintz, A. Godt, G. Jeschke, A. Savitsky, M. Yulikov, Phys. Chem. Chem. Phys. 18, 25120 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Collauto, S. Mishra, A. Litvinov, H.S. Mchaourab, D. Goldfarb, Structure 25, 1264 (2017)CrossRefGoogle Scholar
  30. 30.
    J.F. Desreux, Inorg. Chem. 19, 1319 (1980)CrossRefGoogle Scholar
  31. 31.
    L. Lumata, M. Merritt, C. Malloy, A.D. Sherry, Z. Kovács, Appl. Magn. Reson. 43, 69 (2012)CrossRefGoogle Scholar
  32. 32.
    B. Epel, D. Arieli, D. Baute, D. Goldfarb, J. Magn. Reson. 164, 78 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    F. Neese, Wiley interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995 (1998)CrossRefGoogle Scholar
  36. 36.
    S. Wang, T.D. Westmoreland, Inorg. Chem. 48, 719 (2009)CrossRefGoogle Scholar
  37. 37.
    T. Wacker, G.A. Sierra, A. Schweiger, Isr. J. Chem. 32, 305 (1992)CrossRefGoogle Scholar
  38. 38.
    H.Y. Vincent Ching, P. Demay-Drouhard, H.C. Bertrand, C. Policar, L.C. Tabares, S. Un, Phys. Chem. Chem. Phys. 17, 23368 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Sinnecker, F. Neese, L. Noodleman, W. Lubitz, J. Am. Chem. Soc. 126, 2613 (2004)CrossRefGoogle Scholar
  40. 40.
    B.E. Sturgeon, J.A. Ball, D.W. Randall, R.D. Britt, J. Phys. Chem. 98, 12871 (1994)CrossRefGoogle Scholar
  41. 41.
    P. Manikandan, R. Carmieli, T. Shane, A.J. Kalb, D. Goldfarb, J. Am. Chem. Soc. 122, 3488 (2000)CrossRefGoogle Scholar
  42. 42.
    X. Tan, M. Bernardo, H. Thomann, C.P. Scholes, J. Chem. Phys. 102, 2675 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    D. Baute, D. Goldfarb, J. Phys. Chem. A 109, 7865 (2005)CrossRefGoogle Scholar
  44. 44.
    F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds. Studies in Inorganic Chemistry series, Chap. 6 (Elsevier, 1992), pp. 189–217Google Scholar
  45. 45.
    H.L. Flanagan, D.J. Singel, J. Chem. Phys. 87, 5605–5616 (1987)ADSCrossRefGoogle Scholar
  46. 46.
    A. Collauto, A. Feintuch, M. Qi, A. Godt, T. Meade, D. Goldfarb, J. Magn. Reson. 263, 156 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtFrankfurt Am MainGermany
  2. 2.Department of Chemistry, Center for Advanced Electron Spin Resonance (CAESR)University of OxfordOxfordUK

Personalised recommendations