Advertisement

Applied Magnetic Resonance

, Volume 48, Issue 5, pp 473–483 | Cite as

Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature

  • J. Järvinen
  • J. Ahokas
  • S. Sheludiakov
  • O. Vainio
  • D. Zvezdov
  • L. Lehtonen
  • L. Vlasenko
  • S. Vasiliev
Original Paper

Abstract

We present the results of experiments on dynamic nuclear polarization and relaxation of 75As in silicon crystals. Experiments are performed in strong magnetic fields of 4.6 T and temperatures below 1 K. At these conditions donor electron spins are fully polarized, and the allowed and forbidden electron spin resonance transitions are well resolved. We demonstrate effective nuclear polarization of 75As nuclei via the Overhauser effect on the time scale of several hundred seconds. Excitation of the forbidden transitions leads to a polarization through the solid effect. The relaxation rate of donor nuclei has strong temperature dependence characteristic of Orbach process.

Keywords

Electron Spin Resonance Relaxation Rate Excitation Power Dynamic Nuclear Polarization Electron Spin Resonance Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the funding from the Wihuri Foundation and the Academy of Finland Grants Nos. 260531 and 268745. S. S. thanks UTUG for support. L. V. acknowledges partial support of the Government of Russia, Project No. 14.Z50.31.0021.

References

  1. 1.
    D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. USA 94, 1634 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    G.D. Fuchs, G. Burkard, P.V. Klimov, D.D. Awschalom, Nat. Phys. 7, 789 (2011)CrossRefGoogle Scholar
  3. 3.
    B. Kane, Nature 393, 133 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    M. Steger, K. Saeedi, M.L.W. Thewalt, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.J. Pohl, Science 336, 1280 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    A.M. Tyryshkin, S. Tojo, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.J. Pohl, T. Schenkel, M.L.W. Thewalt, K.M. Itoh, S.A. Lyon, Nat. Mater. 11, 143 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    G. Wolfowicz, P.A. Mortemousque, R. Guichard, S. Simmons, M.L.W. Thewalt, K.M. Itoh, J.J.L. Morton, New J. Phys. 18, 023021 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    J.J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim, J.J.L. Morton, F.A. Zwanenburg, D.N. Jamieson, A.S. Dzurak, A. Morello, Nature 496, 334 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    C.C. Lo, M. Urdampilleta, P. Ross, M.F. Gonzalez-Zalba, J. Mansir, S.A. Lyon, M.L.W. Thewalt, J.J.L. Morton, Nat. Mater. 14, 1 (2015)CrossRefGoogle Scholar
  9. 9.
    G. Pica, G. Wolfowicz, M. Urdampilleta, M.L.W. Thewalt, H. Riemann, N.V. Abrosimov, P. Becker, H.J. Pohl, J.J.L. Morton, R.N. Bhatt, S.A. Lyon, B.W. Lovett, Phys. Rev. B 90, 195204 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J. Scheuer, I. Schwartz, Q. Chen, D. Schulze-Sünninghausen, P. Carl, P. Höfer, A. Retzker, H. Sumiya, J. Isoya, B. Luy, M.B. Plenio, B. Naydenov, F. Jelezko, New J. Phys. 18, 13040 (2016)CrossRefGoogle Scholar
  11. 11.
    D.P. Franke, F.M. Hrubesch, M. Künzl, H.W. Becker, K.M. Itoh, M. Stutzmann, F. Hoehne, L. Dreher, M.S. Brandt, Phys. Rev. Lett. 115, 057601 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)Google Scholar
  13. 13.
    J. Järvinen, J. Ahokas, S. Sheludyakov, O. Vainio, L. Lehtonen, S. Vasiliev, D. Zvezdov, Y. Fujii, S. Mitsudo, T. Mizusaki, M. Gwak, S. Lee, S. Lee, L. Vlasenko, Phys. Rev. B 90, 214401 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    S. Vasilyev, J. Järvinen, E. Tjukanoff, A. Kharitonov, S. Jaakkola, Rev. Sci. Instrum. 75, 94 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    ANPz101, vertical stepper positioner, Attocube systems AG, Munich, Germany, http://www.attocube.com
  16. 16.
    G. Feher, Phys. Rev. 114, 1219 (1959)ADSCrossRefGoogle Scholar
  17. 17.
    G. Feher, E. Gere, Phys. Rev. 114, 1245 (1959)ADSCrossRefGoogle Scholar
  18. 18.
    T. Maly, G.T. Debelouchina, V.S. Bajaj, K.N. Hu, C.G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    D. Pines, J. Bardeen, C. Slichter, Phys. Rev. 106, 489 (1957)ADSCrossRefGoogle Scholar
  20. 20.
    V.I. Abalmassov, F. Marquardt, Phys. Rev. B 70, 75313 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    A. Abragam, M. Goldman, Nuclear Magnetism: Order and Disorder (Oxford University Press, New York, 1982)Google Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • J. Järvinen
    • 1
  • J. Ahokas
    • 1
  • S. Sheludiakov
    • 1
  • O. Vainio
    • 1
  • D. Zvezdov
    • 1
    • 3
  • L. Lehtonen
    • 1
  • L. Vlasenko
    • 2
  • S. Vasiliev
    • 1
  1. 1.Wihuri Physical Laboratory, Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  2. 2.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of PhysicsKazan Federal UniversityKazanRussia

Personalised recommendations