Applied Magnetic Resonance

, Volume 48, Issue 1, pp 85–99 | Cite as

Magnetic Properties of Fe/Ni and Fe/Co Multilayer Thin Films

  • Figen Ay
  • Bulat Z. RameevEmail author
  • Ali C. Basaran
  • Galina S. Kupriyanova
  • Alexander Yu. Goikhman
  • Bekir Aktaş
Original Paper


In this work, the magnetic and transport properties of Fe/SiO2/Ni and Fe/SiO2/Co multilayers grown on Si/SiO2 substrates have been studied. The samples have been prepared by two-stage deposition process. In the first stage, Fe layer and SiO2 interlayer of both samples are grown by ion beam deposition technique at room temperature. Then the samples are taken out to ambient atmosphere and loaded into a pulse laser deposition (PLD) chamber. Prior to the deposition of top layer, the samples are cleaned by annealing at 150 °C. In the second stage, Ni (or Co) layer is prepared by PLD technique at room temperature. The thickness of deposited layers has been measured by Rutherford back scattering (RBS). Magnetic properties of ferromagnetic bilayers have been investigated by room-temperature ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. Standard four-point magneto-transport measurements at various temperatures have been performed. Two-step switching in the in-plane hysteresis loops of Fe/SiO2/Ni and Fe/SiO2/Co samples is observed. A crossing in the middle of hysteresis loops of both samples points to a weak antiferromagnetic interaction between the magnetic layers of the stacks. Saturation magnetization values have been obtained from the VSM measurements of samples with DC magnetic field perpendicular to the films surface. Magneto-transport measurements have shown the predominant contribution of anisotropic magnetic resistance both at room and low temperatures. FMR studies of Fe/SiO2/Ni and Fe/SiO2/Co samples have revealed additional non-uniform (surface and bulk SWR) modes, which behavior has been explained in the framework of the surface inhomogeneity model. An origin of the antiferromagnetic interaction has been discussed.


Vibrate Sample Magnetometer Magnetic Layer Physical Property Measurement System Magnetic Tunnel Junction Rutherford Back Scatter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey), Grant No. 115F472 and by TÜBITAK / RFBR (Russian Fund for Basic Research), joint project Nos. 213M524 / 14-02-91374_ст-а. A. Goikhman is grateful for the financial support from Russian Science Foundation: Grant No. 15-12-10038.


  1. 1.
    G. Reiss, D. Meyners, Appl. Phys. Lett. 88, 043505 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    J.S. Moodera, L.S. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273–3276 (1995). doi: 10.1103/PhysRevLett.74.3273 ADSCrossRefGoogle Scholar
  3. 3.
    T. Miyazaki, N. Tezuka, J. Magn. Magn. Mater. 139, L231–L234 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    M. Bibes, M. Bowen, A. Barthélémy, A. Anane, Appl. Phys. Lett. 82, 3269–3271 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    W. Butler, X. Zhang, T. Schulthess, J. MacLaren, Phys. Rev. B 63, 054416 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    J. Mathon, A. Umerski, Phys. Rev. B 63, 220403 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S. Yang, Nat. Mater. 3, 862–867 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater. 3, 868–871 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    L. Néel, C. R. Acad. Sci. 255, 1676 (1962)Google Scholar
  10. 10.
    R. Zhang, R. Skomski, X. Yin, S.-H. Liou, D.J. Sellmyer, J. Appl. Phys. 107, 09E710 (2010). doi: 10.1063/1.3360768 CrossRefGoogle Scholar
  11. 11.
    J. Varalda, J. Milano, A.J.A. de Oliveira, E.M. Kakuno, I. Mazzaro, D.H. Mosca, L.B. Steren, M. Eddrief, M. Marangolo, D. Demaille, V.H. Etgens, J. Phys. Condens. Matter 18, 9105–9118 (2006). doi: 10.1088/0953-8984/18/39/036 ADSCrossRefGoogle Scholar
  12. 12.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996), p. 449Google Scholar
  13. 13.
    C. Kittel, C. Herring, Phys. Rev. 77, 725 (1950)ADSGoogle Scholar
  14. 14.
    Z. Frait, D. Fraitova, in Spin Waves and Magnetic Exitations Part 2 (North-Holland Physics Publishing, Amsterdam, 1988). ISBN:0 444 87078 4Google Scholar
  15. 15.
    D. Fraitová, Phys. Stat. Sol. (b) 120, 659 (1983). doi: 10.1002/pssb.2221200223  ADSCrossRefGoogle Scholar
  16. 16.
    B. Aktaş, B. Heinrich, G. Woltersdorf, R. Urban, L.R. Tagirov, F. Yıldız, K. Özdoğan, M. Özdemir, O. Yalçin, B.Z. Rameev, J. Appl. Phys. 102, 013912 (2007). doi: 10.1063/1.2749469 ADSCrossRefGoogle Scholar
  17. 17.
    H. Puszkarski, P. Tomczak, Sci. Rep. 4, 6135 (2014). doi: 10.1038/srep06135 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Figen Ay
    • 1
  • Bulat Z. Rameev
    • 1
    • 2
    Email author
  • Ali C. Basaran
    • 1
  • Galina S. Kupriyanova
    • 3
  • Alexander Yu. Goikhman
    • 3
  • Bekir Aktaş
    • 1
  1. 1.Department of PhysicsGebze Technical UniversityGebzeTurkey
  2. 2.E.Zavoisky Kazan Physical-Technical Institute of RASKazanRussian Federation
  3. 3.REC «Functional Nanomaterials»Immanuel Kant Baltic Federal UniversityKaliningradRussian Federation

Personalised recommendations