Applied Magnetic Resonance

, Volume 47, Issue 7, pp 757–780 | Cite as

Möbius–Hückel Topology Switching in Expanded Porphyrins: EPR, ENDOR, and DFT Studies of Doublet and Triplet Open-Shell Systems

  • Klaus MöbiusEmail author
  • Anton SavitskyEmail author
  • Wolfgang Lubitz
  • Martin Plato


The one-sided Möbius band topology with its characteristic 180° twist has fascinated and inspired philosophers, artists and scientists since a long time. On the molecular level, only in the last 13 years a few chemistry groups succeeded to artificially create novel compounds with Möbius symmetry by theory-based molecular design and elaborate chemical synthesis. The interest in molecules with Möbius band symmetry was greatly stimulated in 1964 by a theoretical paper by Edgar Heilbronner from the ETH Zurich. He predicted that sufficiently large [n]annulenes with a closed-shell electron configuration of 4n π-electrons should allow for sufficient π-overlap stabilization to be synthesizable by twisting them into the Möbius topology of their hydrocarbon skeleton. In 2003, the first synthesis of an aromatic Möbius annulene was accomplished by Rainer Herges and co-workers in Kiel. In 2007, Lechosław Latos-Grażyński and co-workers in Wroclaw succeeded in synthesizing free-base di-p-benzi (Yoneda et al., Angew Chem Int Ed 53: 13169–13173, 2014) hexaphyrin (, compound 1, an expanded porphyrin which can dynamically switch between Hückel and Möbius conjugation upon changes of solvent and temperature. Shortly thereafter, in 2008, Atsuhiro Osuka and his co-workers from Kyoto, Seoul and Hyogo published the synthesis of an expanded porphyrin in which metalation triggered the production of molecular twisting and Möbius aromaticity. In this minireview, among other studies also our recent EPR, ENDOR and DFT studies on open-shell states of 1, i.e., on the ground-state radical cation doublet state (total electron spin S = 1/2) and the first excited triplet state (S = 1) are summarized. The review is largely based on a previous joint publication of the current authors with the Latos-Grażyński group on radical cations of 1 (Möbius et al., Phys Chem Chem Phys 17:6644–6652, 2015). The radical cation study was the first one of an open-shell π-system with Möbius topology. In the doublet state, the hyperfine interactions of the unpaired electron spin with specific magnetic nuclei in the molecule was used as a sensitive probe for the electronic structure of the molecule and its symmetry properties. This work has now been extended to state-of-the-art DFT theory studies on photo-excited triplet states of 1. In the open-shell triplet state, besides hyperfine couplings, a change of the zero-field splitting interaction between the two unpaired electron spins is predicted to be a viable sensor for electronic structure changes upon Möbius-to-Hückel topology switching.


Electron Paramagnetic Resonance Porphyrin Electron Paramagnetic Resonance Spectrum Radical Cation Triplet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge with gratitude the scientific cooperation with Lechosław Latos-Grażyński and his coworkers Marcin Stępień and Bartosz Szyszko at the University of Wroclaw who kindly provided the di-p-benzi [28]hexaphyrin ( compound. We express our thanks to Rolf Trinoga, IT Group Leader at the MPI for Chemical Energy Conversion (CEC) in Mülheim (Ruhr), for his assistance in our ORCA-DFT calculations on the CEC Hermes computer cluster. We thank Gudrun Klihm and Christoph Laurich (CEC) for their essential contributions to the ENDOR experiments and sample preparations as well as Michal Zalibera (CEC) who is involved in the on-going triplet-state EPR experiments. We gratefully acknowledge support by the Max Planck Society and Free University Berlin. This work was additionally supported by the Excellence Cluster RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.


  1. 1.
    K. Möbius, M. Plato, G. Klihm, C. Laurich, A. Savitsky, W. Lubitz, B. Szyszko, M. Stępień, L. Latos-Grażyński, Phys. Chem. Chem. Phys. 17, 6644–6652 (2015)CrossRefGoogle Scholar
  2. 2.
    A.F. Möbius, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig; Sitzung am 27. November 1865, vol 11, pp. 31–68 (1865)Google Scholar
  3. 3.
    J.B. Listing, Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen; vorgetragen am 7. Dez. 1861, vol 10, pp. 97–182 (1861)Google Scholar
  4. 4.
    C.A. Pickover, The Möbius Strip: Dr. August Möbius’s Marvellous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology (Basic Books, New York, 2006)Google Scholar
  5. 5.
    R. Herges, Naturwiss. Rundschau 58, 301–310 (2005)Google Scholar
  6. 6.
    R. Herges, Chem. Rev. 106, 4820–4842 (2006)CrossRefGoogle Scholar
  7. 7.
    G.R. Schaller, R. Herges, Chem. Commun. 49, 1254–1260 (2013)CrossRefGoogle Scholar
  8. 8.
    E. Heilbronner, Tetrahedron Lett. 29, 1923–1928 (1964)CrossRefGoogle Scholar
  9. 9.
    M. Stępień, B. Szyszko, L. Latos-Grażyński, J. Am. Chem. Soc. 132, 3140–3152 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Stępień, N. Sprutta, L. Latos-Grażyński, Angew. Chem. Int. Ed. 50, 4288–4340 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Tanaka, S. Saito, S. Mori, N. Aratani, H. Shinokubo, N. Shibata, Y. Higuchi, Z.S. Yoon, K.S. Kim, S.B. Noh, J.K. Park, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 47, 681–684 (2008)CrossRefGoogle Scholar
  12. 12.
    J.M. Lim, J.-Y. Shin, Y. Tanaka, S. Saito, A. Osuka, D. Kim, J. Am. Chem. Soc. 132, 3105–3114 (2010)CrossRefGoogle Scholar
  13. 13.
    B. Szyszko, L. Latos-Grażyński, L. Szterenberg, Angew. Chem. Int. Ed. 50, 6587–6591 (2011)CrossRefGoogle Scholar
  14. 14.
    C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, X. Zhang, Phys. Rev. Lett. 105, 235501-1–235501-4 (2010)Google Scholar
  15. 15.
    E. W. Weisstein, Accessed 1 July 2015
  16. 16.
  17. 17.
    M. Stępień, L. Latos-Grażyński, N. Sprutta, P. Chwalisz, L. Szterenberg, Angew. Chem. Int. Ed. 46, 7869–7873 (2007)CrossRefGoogle Scholar
  18. 18.
    E. Hückel, Z. Physik. 70, 204–286 (1931)ADSCrossRefGoogle Scholar
  19. 19.
    E. Hückel, Z. Physik. 76, 628–648 (1932)ADSCrossRefGoogle Scholar
  20. 20.
    E. Hückel, Grundzüge der Theorie Ungesättiger und aromatischer Verbindungen (VCH, Berlin, 1938)Google Scholar
  21. 21.
    H.E. Zimmerman, J. Am. Chem. Soc. 88, 1564–1565 (1966)CrossRefGoogle Scholar
  22. 22.
    T. Kawase, M. Oda, Angew. Chem. Int. Ed. 43, 4396–4398 (2004)CrossRefGoogle Scholar
  23. 23.
    Z.S. Yoon, A. Osuka, D. Kim, Nat. Chem. 1, 113–122 (2009)CrossRefGoogle Scholar
  24. 24.
    D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature 426, 819–821 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    D. Ajami, K. Hess, F. Koehler, C. Nather, O. Oeckler, A. Simon, C. Yamamoto, Y. Okamoto, R. Herges, Chem. Eur. J. 12, 5434–5445 (2006)CrossRefGoogle Scholar
  26. 26.
    K. Moriya, T. Yoneda, S. Saito, A. Osuka, Chem. Lett. 40, 455–457 (2011)CrossRefGoogle Scholar
  27. 27.
    K.S. Kim, Z.S. Yoon, A.B. Ricks, J.-Y. Shin, S. Mori, J. Sankar, S. Saito, Y.M. Jung, M.R. Wasielewski, A. Osuka, D. Kim, J. Phys. Chem. A 113, 4498–4506 (2009)CrossRefGoogle Scholar
  28. 28.
    T. Yoneda, Y.M. Sung, J.M. Lim, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 53, 13169–13173 (2014)CrossRefGoogle Scholar
  29. 29.
    E. Vogel, Pure Appl. Chem. 68, 1355–1360 (1996)Google Scholar
  30. 30.
    E. Vogel, M. Broring, S.J. Weghorn, P. Scholz, R. Deponte, J. Lex, H. Schmickler, K. Schaffner, S.E. Braslavsky, M. Muller, S. Porting, C.J. Fowler, J.L. Sessler, Angew. Chem. Int. Ed. 36, 1651–1654 (1997)CrossRefGoogle Scholar
  31. 31.
    J.L. Sessler, S.J. Weghorn, V. Lynch, M.R. Johnson, Angew. Chem. Int. Ed. 33, 1509–1512 (1994)CrossRefGoogle Scholar
  32. 32.
    J.S. Sessler, S.J. Weghorn, Expanded, Contracted, and Isomeric Porphyrins (Elsevier, Amsterdam, 1997)Google Scholar
  33. 33.
    T.K. Ahn, J.H. Kwon, D.Y. Kim, D.W. Cho, D.H. Jeong, S.K. Kim, M. Suzuki, S. Shimizu, A. Osuka, D. Kim, J. Am. Chem. Soc. 127, 12856–12861 (2005)CrossRefGoogle Scholar
  34. 34.
    M.-C. Yoon, P. Kim, H. Yoo, S. Shimizu, T. Koide, S. Tokuji, S. Saito, A. Osuka, D. Kim, J. Phys. Chem. B. 115, 14928–14937 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Torrent-Sucarrat, J.M. Anglada, J.M. Luis, J. Chem. Phys. 137, 184306-1–184306-9 (2012)Google Scholar
  36. 36.
    C. Castro, C.M. Isborn, W.L. Karney, M. Mauksch, P.V. Schleyer, Org. Lett. 4, 3431–3434 (2002)CrossRefGoogle Scholar
  37. 37.
    H.S. Rzepa, Chem. Rev. 105, 3697–3715 (2005)CrossRefGoogle Scholar
  38. 38.
    G. Bucher, S. Grimme, R. Huenerbein, A.A. Auer, E. Mucke, F. Koehler, J. Siegwarth, R. Herges, Angew. Chem. Int. Ed. 48, 9971–9974 (2009)CrossRefGoogle Scholar
  39. 39.
    E.-K. Mucke, F. Koehler, R. Herges, Org. Lett. 12, 1708–1711 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Alonso, P. Geerlings, F. de Proft, Chem. Eur. J. 18, 10916–10928 (2012)CrossRefGoogle Scholar
  41. 41.
    F. Neese, WIREs Comput. Mol. Sci. 2, 73–78 (2012)CrossRefGoogle Scholar
  42. 42.
    K. Möbius, M. Plato, W. Lubitz, Phys. Rep. 87, 171–208 (1982)ADSCrossRefGoogle Scholar
  43. 43.
    M. Stępień, B. Szyszko, L. Latos-Grażyński, Org. Lett. 11, 3930–3933 (2009)CrossRefGoogle Scholar
  44. 44.
    B. Szyszko, N. Sprutta, P. Chwalisz, M. Stępień, L. Latos-Grażyński, Chem. Eur. J. 20, 1985–1997 (2014)CrossRefGoogle Scholar
  45. 45.
    H. Käss, J. Rautter, W. Zweygart, A. Struck, H. Scheer, W. Lubitz, J. Phys. Chem. 98, 354–363 (1994)CrossRefGoogle Scholar
  46. 46.
    W. Zweygart, R. Thanner, W. Lubitz, J. Magn. Reson. 109, 172–176 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    K. Möbius, R. Biehl, in Mulitiple Electron Resonance Spectroscopy, ed. by M.M. Dorio, J.H. Freed (Plenum, New York, 1979), pp. 475–507Google Scholar
  48. 48.
    W. Lubitz, R.A. Isaacson, E.C. Abresch, G. Feher, Proc. Natl. Acad. Sci. USA 81, 7792–7796 (1984)ADSCrossRefGoogle Scholar
  49. 49.
    A. Carrington, A.D. McLachlan, Introduction to Magnetic Resonance (Harper and Row, New York, 1969)Google Scholar
  50. 50.
    R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)Google Scholar
  51. 51.
    W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2000)Google Scholar
  52. 52.
    R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724–1000 (1971)ADSCrossRefGoogle Scholar
  53. 53.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)CrossRefGoogle Scholar
  54. 54.
    A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 799–805 (1993)Google Scholar
  55. 55.
    N.M. Atherton, Principles of Electron Spin Resonance (Ellis Horwood, New York, 1993)Google Scholar
  56. 56.
    T. O’Have, Accessed 1 July 2015
  57. 57.
    M.N. Khan, C. Palivan, F. Barbosa, J. Amaudrut, G. Gescheidt, J. Chem. Soc. Perkin Trans. 2, 1522–1526 (2001)Google Scholar
  58. 58.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)ADSCrossRefGoogle Scholar
  59. 59.
    S. Sinnecker, F. Neese, J. Phys. Chem. A 110, 12267–12275 (2006)CrossRefGoogle Scholar
  60. 60.
    G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, New York, 2010)CrossRefGoogle Scholar
  61. 61.
    H. Kurreck, B. Kirste, W. Lubitz, Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution (VCH Publishers, New York, 1988)Google Scholar
  62. 62.
    S.D. Chemerisov, O.Y. Grinberg, D.S. Tipikin, Y.S. Lebedev, H. Kurreck, K. Möbius, Chem. Phys. Lett. 218, 353–361 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and Their Model Systems: Characterization of Transient Paramagnetic States (RSC Publishing, London, 2009)Google Scholar
  64. 64.
    C.W.M. Kay, M. Di Valentin, K. Möbius, J. Chem. Soc. Perkin Trans. 2, 2563–2568 (1997)CrossRefGoogle Scholar
  65. 65.
    C.E. Tait, P. Neuhaus, H.L. Anderson, C.R. Timmel, J. Am. Chem. Soc. 137, 6670–6679 (2015)CrossRefGoogle Scholar
  66. 66.
    Z. Sun, J. Wu, J. Mater. Chem. 22, 4151–4160 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Z. Sun, Z. Zeng, J. Wu, Chem. Asian J. 8, 2894–2904 (2013)CrossRefGoogle Scholar
  68. 68.
    W. Zeng, S. Lee, M. Son, M. Ishida, K. Furukawa, P. Hu, Z. Sun, D. Kim, J. Wu, Chem. Sci. 6, 2427–2433 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of PhysicsFree University BerlinBerlinGermany
  2. 2.Max Planck Institute for Chemical Energy ConversionMülheim (Ruhr)Germany

Personalised recommendations