Advertisement

Applied Magnetic Resonance

, Volume 47, Issue 7, pp 711–725 | Cite as

Analysis of the SABRE (Signal Amplification by Reversible Exchange) Effect at High Magnetic Fields

  • Andrey N. Pravdivtsev
  • Alexandra V. Yurkovskaya
  • Pavel A. Petrov
  • Hans-Martin Vieth
  • Konstantin L. Ivanov
Article

Abstract

A detailed study of the Signal Amplification By Reversible Exchange (SABRE) effect at high magnetic fields is performed. SABRE is formed by spin order transfer from parahydrogen to a substrate in a transient organometallic complex. Typically, such a transfer is efficient at low magnetic fields; at high fields it requires radio-frequency (RF) excitation of spins in the SABRE complex. However, recently it has been shown (Barskiy et al. in J. Am. Chem. Soc. 136:3322–3325, 2014) that high-field SABRE is also feasible due to “spontaneous” spin order transfer (i.e., transfer in the absence of RF excitation) although the transfer efficiency is low. Here, we studied the SABRE field dependence for protons in the field range 1.0–16.4 T and found an increase of polarization with the field; further optimization of proton polarization can be achieved by varying the viscosity of the solvent. As previously, polarization transfer is attributed to cross-relaxation; this conclusion is supported by additional experiments. For spin-½ hetero-nuclei, such as 15N and 31P, spontaneous spin order transfer is also feasible; however, in contrast to protons, it is based on a coherent mechanism. Consequently, higher transfer efficiency is achieved; moreover the 15N and 31P spectral patterns are remarkably different from that for protons: multiplet (anti-phase) polarization is seen for hetero-nuclei. Our study is of importance for enhancing weak nuclear magnetic resonance (NMR) signals by exploiting non-thermally polarized spins. Although the efficiency of high-field SABRE is lower than that of low-field SABRE; the high-field SABRE experiment is easy to implement for improving the sensitivity of NMR methods.

Keywords

Nuclear Magnetic Resonance Polarization Transfer Nuclear Overhauser Effect Parahydrogen External Magnetic Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge financial support by the Russian Science Foundation (Grant No. 14-13-01053). The basic funding of ITC was provided by the Federal Agency of Scientific Organizations, Russia. We are thankful to Prof. Leonid Kulik (Institute of Chemical Kinetics and Combustion, Novosibirsk) for providing deuterated glycerol.

Supplementary material

723_2016_771_MOESM1_ESM.pdf (387 kb)
Supplementary material 1 (PDF 387 kb)

References

  1. 1.
    R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. López-Serrano, D.C. Williamson, Science 323, 1708 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Mewis, Magn. Reson. Chem. 53, 789 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997)CrossRefGoogle Scholar
  4. 4.
    R.A. Green, R.W. Adams, S.B. Duckett, R.E. Mewis, D.C. Williamson, G.G.R. Green, Prog. Nucl. Magn. Reson. Spectrosc. 67, 1 (2012)CrossRefGoogle Scholar
  5. 5.
    J.-B. Hövener, N. Schwaderlapp, T. Lickert, S.B. Duckett, R.E. Mewis, L.A.R. Highton, S.M. Kenny, G.G.R. Green, D. Leibfritz, J.G. Korvink, J. Hennig, D. von Elverfeldt, Nature Commun. 4, 2946 (2013)CrossRefGoogle Scholar
  6. 6.
    A.N. Pravdivtsev, A.V. Yurkovskaya, H.-M. Vieth, K.L. Ivanov, J. Phys. Chem. B 119, 13619 (2015)CrossRefGoogle Scholar
  7. 7.
    A.N. Pravdivtsev, A.V. Yurkovskaya, H. Zimmermann, H.-M. Vieth, K.L. Ivanov, RSC Adv. 5, 63615 (2015)CrossRefGoogle Scholar
  8. 8.
    N. Eshuis, R.L.E.G. Aspers, B.J.A. van Weerdenburg, M.C. Feiters, F.P.J.T. Rutjes, S.S. Wijmenga, M. Tessari, Angew. Chem. Intl. Ed. 54, 14527 (2015)CrossRefGoogle Scholar
  9. 9.
    V. Daniele, F.-X. Legrand, P. Berthault, J.-N. Dumez, G. Huber, Chem. Phys. Chem. 16, 3413 (2015)Google Scholar
  10. 10.
    T. Ratajczyk, T. Gutmann, P. Bernatowicz, G. Buntkowsky, J. Frydel, B. Fedorczyk, Chem. Eur. J. 21, 12616 (2015)CrossRefGoogle Scholar
  11. 11.
    L.S. Lloyd, R.W. Adams, M. Bernstein, S. Coombes, S.B. Duckett, G.G.R. Green, R.J. Lewis, R.E. Mewis, C.J. Sleigh, J. Am. Chem. Soc. 134, 12904 (2012)CrossRefGoogle Scholar
  12. 12.
    N. Eshuis, N. Hermkens, B.J.A. van Weerdenburg, M.C. Feiters, F.P.J.T. Rutjes, S.S. Wijmenga, M. Tessari, J. Am. Chem. Soc. 136, 2695 (2014)CrossRefGoogle Scholar
  13. 13.
    T. Theis, M.L. Truong, A.M. Coffey, R.V. Shchepin, K.W. Waddell, F. Shi, B.M. Goodson, W.S. Warren, E.Y. Chekmenev, J. Am. Chem. Soc. 137, 1404–1407 (2015)CrossRefGoogle Scholar
  14. 14.
    K.X. Moreno, K. Nasr, M. Milne, A.D. Sherry, W.J. Goux, J. Magn. Reson. 257, 15 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    H. Zeng, J. Xu, J. Gillen, M.T. McMahon, D. Artemov, J.-M. Tyburn, J.A.B. Lohman, R.E. Mewis, K.D. Atkinson, G.G.R. Green, S.B. Duckett, P.C.M. van Zijl, J. Magn. Reson. 237, 73 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.J. Burns, P.J. Rayner, G.G.R. Green, L.A.R. Highton, R.E. Mewis, S.B. Duckett, J. Phys. Chem. B 119, 5020 (2015)CrossRefGoogle Scholar
  17. 17.
    D.A. Barskiy, K.V. Kovtunov, I.V. Koptyug, P. He, K.A. Groome, Q.A. Best, F. Shi, B.M. Goodson, R.V. Shchepin, M.L. Truong, A.M. Coffey, K.W. Waddell, E.Y. Chekmenev, Chem. Phys. Chem. 15, 4100 (2014)Google Scholar
  18. 18.
    E.B. Dücker, L.T. Kuhn, K. Münnemann, C. Griesinger, J. Magn. Reson. 214, 159 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A.N. Pravdivtsev, A.V. Yurkovskaya, H.-M. Vieth, K.L. Ivanov, R. Kaptein, Chem. Phys. Chem. 14, 3327 (2013)Google Scholar
  20. 20.
    R.W. Adams, S.B. Duckett, R.A. Green, D.C. Williamson, G.G.R. Green, J. Chem. Phys. 131, 194505 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A.N. Pravdivtsev, K.L. Ivanov, A.V. Yurkovskaya, P.A. Petrov, R. Kaptein, H.-H. Limbach, H.-M. Vieth, J. Magn. Reson. 261, 73 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    A.N. Pravdivtsev, A.V. Yurkovskaya, H.-M. Vieth, K.L. Ivanov, Phys. Chem. Chem. Phys. 16, 24672 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Theis, M. Truong, A.M. Coffey, E.Y. Chekmenev, W.S. Warren, J. Magn. Reson. 248, 23 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    D.A. Barskiy, K.V. Kovtunov, I.V. Koptyug, P. He, K.A. Groome, Q.A. Best, F. Shi, B.M. Goodson, R.V. Shchepin, A.M. Coffey, K.W. Waddell, E.Y. Chekmenev, J. Am. Chem. Soc. 136, 3322 (2014)CrossRefGoogle Scholar
  25. 25.
    M.L. Truong, F. Shi, P. He, B. Yuan, K.N. Plunkett, A.M. Coffey, R.V. Shchepin, D.A. Barskiy, K.V. Kovtunov, I.V. Koptyug, K.W. Waddell, B.M. Goodson, E.Y. Chekmenev, J. Phys. Chem. B 118, 13882 (2014)CrossRefGoogle Scholar
  26. 26.
    M.J. Cowley, R.W. Adams, K.D. Atkinson, M.C.R. Cockett, S.B. Duckett, G.G.R. Green, J.A.B. Lohman, R. Kerssebaum, D. Kilgour, R.E. Mewis, J. Am. Chem. Soc. 133, 6134 (2011)CrossRefGoogle Scholar
  27. 27.
    K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, J. López-Serrano, A.C. Whitwood, J. Am. Chem. Soc. 131, 13362 (2009)CrossRefGoogle Scholar
  28. 28.
    I. Kownacki, M. Kubicki, K. Szubert, B. Marciniec, J. Organomet. Chem. 693, 321 (2008)CrossRefGoogle Scholar
  29. 29.
    A.S. Kiryutin, A.N. Pravdivtsev, K.L. Ivanov, Y.A. Grishin, H.-M. Vieth, A.V. Yurkovskaya, J. Magn. Reson. 263, 79 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    J. Kowalewski, L. Mäler, in Series in Chemical Physics, ed. by H.J. Moore, N.D. Spencer (CRC Press Taylor & Francis Group, Boca Raton, 2006), vol. 2, p. 426Google Scholar
  31. 31.
    S. Aime, R. Gobetto, F. Reineri, D. Canet, J. Magn. Reson. 178, 184 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    K.L. Ivanov, A.V. Yurkovskaya, H.-M. Vieth, Z. Phys, Chem. 226, 1315 (2012)Google Scholar
  33. 33.
    A.N. Pravdivtsev, K.L. Ivanov, A.V. Yurkovskaya, H.-M. Vieth, R.Z. Sagdeev, Dokl. Phys. Chem. 464, 247 (2015)CrossRefGoogle Scholar
  34. 34.
    J.-K. Vollenweider, H. Fischer, Chem. Phys. 108, 365 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Andrey N. Pravdivtsev
    • 1
    • 2
  • Alexandra V. Yurkovskaya
    • 1
    • 2
  • Pavel A. Petrov
    • 2
    • 3
  • Hans-Martin Vieth
    • 1
    • 4
  • Konstantin L. Ivanov
    • 1
    • 2
  1. 1.International Tomography CenterSiberian Branch of the Russian Academy of ScienceNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of ScienceNovosibirskRussia
  4. 4.Freie Universität BerlinBerlinGermany

Personalised recommendations