Applied Magnetic Resonance

, Volume 47, Issue 3, pp 255–263 | Cite as

Magnetic Resonance Diffusion Tensor Imaging in Evaluating Transcranial Magnetic Stimulation Treatment for Acute Ischemic Stroke: A Retrospective Study

  • Yufeng Li
  • Qian Yu
  • Yi Li
  • Bo Peng
  • Yamei Li
  • Jing Fu
  • Ziyu Wang
  • Shiqiong ZhuEmail author


Currently there is little report about the application of diffusion tensor imaging (DTI) technology to judge the prognosis of patients with cerebral apoplexy. This study was to investigate cerebral functional connection in both sides of the M1 area in patients with cerebral infarction, who were treated with transcranial magnetic stimulation (TMS), using DTI technology. Fifteen patients with cerebral infarction admitted to the hospital between February 2013 and August 2014 were enrolled for the study. The patients were treated with TMS and underwent DTI. The fractional anisotropy (FA), apparent diffusion coefficient (ADC), the relative FA value (rFA), and relative ADC values (rADC) were analyzed using paired t-test. rFA, rADC, and NIHSS of the lesion side before and after treatment were analyzed by Spearman correlation analysis. The results showed that before treatment, ADC value and FA value of the lesion side were lower than those of the contralateral healthy side with statistical significance (ADCt = 2.849, P < 0.05; FAt = 10.285, P < 0.05). Four weeks after treatment, ADC value and FA value of the lesion side were higher than those before treatment with statistical significance (ADCt = 6.206, P < 0.05; FAt = 3.788, P < 0.05). Both rFA values of pre-treatment and post-treatment showed negative correlation with NIHSS score with statistical significance (P < 0.05). In conclusion, after TMS with TDI technique, the value of FA and ADC values significantly increased compared to that of pre-treatment. It suggested that transcranial magnetic stimulation played a positive role in stroke rehabilitation.


Apparent Diffusion Coefficient Fractional Anisotropy Transcranial Magnetic Stimulation Diffusion Tensor Imaging Cerebral Infarction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    S. Grupke, J. Hall, M. Dobbs, G.J. Bix, J.F. Fraser, Clin. Neurol. Neurosurg. 129, 1–9 (2015)CrossRefGoogle Scholar
  2. 2.
    J.A. Brown, Prog. Brain Res. 157, 223–228 (2006)CrossRefGoogle Scholar
  3. 3.
    J.V. Escudero, J. Sancho, D. Bautista, M. Escudero, J. López-Trigo, Stroke 29, 1854–1859 (1998)CrossRefGoogle Scholar
  4. 4.
    D. Salat, D. Tuch, D. Greve, A. Van Der Kouwe, N. Hevelone, A. Zaleta, B. Rosen, B. Fischl, S. Corkin, H. Diana Rosas, A. Dale, Neurobiol. Aging 26, 1215–1227 (2005)CrossRefGoogle Scholar
  5. 5.
    Y. Assaf, O. Pasternak, J. Mol. Neurosci. 34, 51–61 (2008)CrossRefGoogle Scholar
  6. 6.
    R. von Kummer, I. Dzialowski, J. Gerber, J. Neuroradiol. 42, 47–54 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Curra, N. Modugno, M. Inghilleri, M. Manfredi, M. Hallett, A. Berardelli, Neurology. 59, 1851–1859 (2002)CrossRefGoogle Scholar
  8. 8.
    M.S. George, S.H. Lisanby, H.A. Sackeim, Arch. Gen. Psychiatry 56, 300–311 (1999)CrossRefGoogle Scholar
  9. 9.
    C. Pierpaoli, P. Jezzard, P.J. Basser, A. Barnett, G. Di Chiro, Radiology 201, 637–648 (1996)CrossRefGoogle Scholar
  10. 10.
    B.P. Witwer, R. Moftakhar, K.M. Hasan, P. Deshmukh, V. Haughton, A. Field, K. Arfanakis, J. Noyes, C. Moritz, E. Meyerand, H. Rowley, A. Alexander, B. Badie, J. Neurosurg. 97, 568–575 (2002)CrossRefGoogle Scholar
  11. 11.
    D. Le Bihan, J.F. Mangin, C. Poupon, C.A. Clark, S. Pappata, N. Molko, H. Chabriat, Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001)CrossRefGoogle Scholar
  12. 12.
    N.G. Papadakis, D. Xing, C.L.-H. Huang, L.D. Hall, T.A. Carpenter, J. Magn. Reson. 137, 67–82 (1999)CrossRefADSGoogle Scholar
  13. 13.
    Q. Yang, B.M. Tress, P.A. Barber, P.M. Desmond, D.G. Darby, R.P. Gerraty, T. Li, S.M. Davis, Stroke 30, 2382–2390 (1999)CrossRefGoogle Scholar
  14. 14.
    B. Stieltjes, W.E. Kaufmann, P.C. van Zijl, K. Fredericksen, G.D. Pearlson, M. Solaiyappan, S. Moria, Neuroimage. 14, 723–735 (2001)CrossRefGoogle Scholar
  15. 15.
    Z. Liu, Y. Li, X. Zhang, S. Savant-Bhonsale, M. Chopp, Stroke 39, 2571–2577 (2008)CrossRefGoogle Scholar
  16. 16.
    A.G. Sorensen, O. Wu, W.A. Copen, T.L. Davis, R.G. Gonzalez, W.J. Koroshetz, T.G. Reese, B.R. Rosen, V.J. Wedeen, R.M. Weisskoff, Radiology 212, 785–792 (1999)CrossRefGoogle Scholar
  17. 17.
    J. Wardlaw, S. Keir, M. Bastin, P. Armitage, A. Rana, Neurology. 59, 1381–1387 (2002)CrossRefGoogle Scholar
  18. 18.
    G. Thomalla, V. Glauche, M.A. Koch, C. Beaulieu, C. Weiller, J. Röther, Neuroimage. 22, 1767–1774 (2004)CrossRefGoogle Scholar
  19. 19.
    Z. Xu, Q. Guo, G. Chen, M. Li, P. Lin, Chin. J. Pract. Nerv. Dis. 11, 4–6 (2009)Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Yufeng Li
    • 1
  • Qian Yu
    • 1
  • Yi Li
    • 1
  • Bo Peng
    • 1
  • Yamei Li
    • 1
  • Jing Fu
    • 1
  • Ziyu Wang
    • 1
  • Shiqiong Zhu
    • 1
    Email author
  1. 1.Department of RehabilitationSichuan Academy of Medical Sciences, Sichuan Provincial People’s HospitalChengduChina

Personalised recommendations