Advertisement

Applied Magnetic Resonance

, Volume 46, Issue 9, pp 1007–1012 | Cite as

Development of High-Pressure and Multi-Frequency ESR System and Its Application to Quantum Spin System

  • Takahiro SakuraiEmail author
  • Ryosuke Matsui
  • Kohei Kawasaki
  • Susumu Okubo
  • Hitoshi Ohta
  • Kazuyuki Matsubayashi
  • Yoshiya Uwatoko
  • Kazutaka Kudo
  • Yoji Koike
Article

Abstract

We have developed a high-pressure and multi-frequency electron spin resonance (ESR) system in the submillimeter wave region. The pressure is generated by the piston–cylinder pressure cell whose inner parts are all made of ceramics. The requirements for the inner parts of the pressure cell are toughness and transmission in the submillimeter wave region and they enable us to observe the transmitted light through a sample subjected to high pressure. It was found that both properties can be achieved by the combination of the inner parts made of the ZrO2-based ceramic and the Al2O3 ceramic. For the Shastry-Sutherland compound SrCu2(BO3)2, we observed the direct ESR transition from the singlet ground state to the first excited triplet sates at 1.5 GPa successfully in the frequency region from 300 to 700 GHz.

Keywords

Electron Spin Resonance Pressure Cell Singlet Ground State Quantum Spin System Backward Wave Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was partially supported by Grants-in-Aid for Scientific Research (C) (No. 25400341) from Japan Society for the Promotion of Science.

References

  1. 1.
    H. Ohta, H. Nojiri, M. Motokawa (eds.), Application of Submillimeter Wave Electron Spin Resonance for Novel Magnetic Systems, J. Phys. Soc. Jpn., vol. 72 Suppl. B (2003)Google Scholar
  2. 2.
    T. Sakurai, A. Taketani, T. Tomita, S. Okubo, H. Ohta, Y. Uwatoko, Rev. Sci. Instrum. 78, 065107 (2007)CrossRefADSGoogle Scholar
  3. 3.
    T. Sakurai, K. Fujimoto, R. Goto, S. Okubo, H. Ohta, Y. Uwatoko, J. Magn. Reson. 223, 41 (2012)CrossRefADSGoogle Scholar
  4. 4.
    K. Fujimoto, T. Sakurai, S. Okubo, H. Ohta, K. Matsubayashi, Y. Uwatoko, K. Kudo, Y. Koike, Appl. Magn. Reson. 44, 893 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Haravifard, A. Banerjee, J.C. Lang, G. Srajer, D.M. Silevitch, B.D. Gaulin, H.A. Dabkowska, T.F. Rosenbaum, Proc. Natl. Acad. Sci. USA 109, 2286 (2012)CrossRefADSGoogle Scholar
  6. 6.
    H. Kageyama, N.V. Mushnikov, M. Yamada, T. Goto, Y. Ueda, Phys. B 329–333, 1020 (2003)CrossRefGoogle Scholar
  7. 7.
    T. Sakurai, M. Tomoo, S. Okubo, H. Ohta, K. Kudo, Y. Koike, J. Phys. Conf. Ser. 150, 042171 (2009)CrossRefADSGoogle Scholar
  8. 8.
    O. Cépas, K. Kakurai, L.P. Regnault, T. Ziman, J.P. Boucher, N. Aso, M. Nishi, H. Kageyama, Y. Ueda, Phys. Rev. Lett. 87, 167205 (2001)CrossRefADSGoogle Scholar
  9. 9.
    H. Nojiri, H. Kageyama, Y. Ueda, M. Motokawa, J. Phys. Soc. Jpn. 72, 3243 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Takahiro Sakurai
    • 1
    Email author
  • Ryosuke Matsui
    • 2
  • Kohei Kawasaki
    • 2
  • Susumu Okubo
    • 3
  • Hitoshi Ohta
    • 2
    • 3
  • Kazuyuki Matsubayashi
    • 4
  • Yoshiya Uwatoko
    • 4
  • Kazutaka Kudo
    • 5
  • Yoji Koike
    • 6
  1. 1.Center for Supports to Research and Education ActivitiesKobe UniversityKobeJapan
  2. 2.Graduate School of ScienceKobe UniversityKobeJapan
  3. 3.Molecular Photoscience Research CenterKobe UniversityKobeJapan
  4. 4.Institute for Solid State PhysicsUniversity of TokyoChibaJapan
  5. 5.Department of PhysicsOkayama UniversityOkayamaJapan
  6. 6.Department of Applied PhysicsTohoku UniversitySendaiJapan

Personalised recommendations