Applied Magnetic Resonance

, Volume 46, Issue 1, pp 33–48 | Cite as

Dielectric Ceramic EPR Resonators for Low Temperature Spectroscopy at X-band Frequencies

  • Stefan Friedländer
  • Oleg Ovchar
  • Horst Voigt
  • Rolf Böttcher
  • Anatolii Belous
  • Andreas PöpplEmail author


The performance of new dielectric ceramic resonators (DRs) for continuous wave (cw) X-band electron paramagnetic resonance (EPR) spectroscopy is investigated at room temperature and low temperatures (77, 6 K). The DRs with high dielectric constants of about \(\varepsilon _r = 80\), featuring low residual paramagnetic impurities, have been developed and produced on the basis of barium lanthanide titanates solid solutions with the general formula Ba\(_{6-x}\)Ln\(_{8+2x/3}\)Ti\(_{18}\)O\(_{54}\) (Ln = Sm, Nd) that demonstrate at once low dielectric losses in the microwave range (\(\tan \delta = 7\)–14 × 10−4 at 10 GHz) and appropriate temperature stability of the dielectric constant (\(\tau _\varepsilon = \pm\)5 ppm/K). They were optimized for samples with small dimensions and can be used in commercial Oxford instruments flow cryostats if the coupling is done via cavity resonators. We found a maximal EPR signal enhancement by a factor up to 74 at 6 K. The increases of quality and filling factors as well as that of the microwave (mw) \(B_1\)-field in the resonator setup are discussed in dependence on temperature. We show that the absolute sensitivity gain must be related to that increase in the mw field and the remaining relative gain of the SNR is about 18 for small samples. The developed DRs have shown a good potential in EPR application as reliable and easy-to-use components allowing research of thin films and in particular small crystalline structures.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Cavity Resonator Couple Mode Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support within the priority programs 1362 and 1601. Further our thanks goes out to M. Kobalz and H. Krautscheid of the inorganic chemistry group at Leipzig University for the preparation of the Cu-MOF samples.

Supplementary material

723_2014_611_MOESM1_ESM.pdf (50 kb)
Supplementary material 1 (PDF 50 kb)


  1. 1.
    M. Jaworski, A. Sienkiewicz, C.P. Scholes, J. Magn. Reson. 124, 87 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    A. Sienkiewicz, K. Qu, C.P. Scholes, Rev. Sci. Instrum. 65(1), 68 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    G. Lassmann, P.P. Schmidt, W. Lubitz, J. Magn. Reson. 172, 312 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    M.W. Pospieszalski, IEEE Trans. Microwave Theory Technol. MIT 27(3), 233 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    S. del Monaco, J. Brivati, G. Gualtieri, A. Sotgiu, Rev. Sci. Instrum. 66(10), 5104 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    A. Blank, E. Stavitski, H. Levanon, F. Gubaydullin, Rev. Sci. Instrum. 74(5), 2853 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Mattar, S.Y. ElNaggar, J. Magn. Reson. 209, 174 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    I.S. Golovina, S.P. Kolesnik, I.N. Geifman, A.G. Belous, Rev. Sci. Instrum. 81(4), 044702 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A. Sienkiewicz, B. Vileno, S. Garaj, M. Jaworski, L. Forro, J. Magn. Reson. 177(2), 261 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    S.M. Mattar, A.H. Emwas, Chem. Phys. Lett. 368, 724 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    I. Golovina, I. Geifman, A. Belous, J. Magn. Reson. 195, 52 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    I. Geifman, I. Golovina, V. Kofman, E. Zusmanov, Ferroelectrics 234(1), 81 (1999)CrossRefGoogle Scholar
  13. 13.
    I. Geifman, I. Golovina, Concepts Magn. Reson. 26B(1), 46 (2005)CrossRefGoogle Scholar
  14. 14.
    H.R. Yi, N. Klein, IEEE Trans. Appl. Superconductivity 11(1), 489 (2001)CrossRefGoogle Scholar
  15. 15.
    A. Blank, E. Suhovoy, R. Halevy, L. Shtirberg, W. Harneit, Phys. Chem. Chem. Phys. 11(31), 6689 (2009)CrossRefGoogle Scholar
  16. 16.
    A.A. Kishk, Y.M.M. Antar, in Antenna Engineering Handbook, ed. by J.L. Volakis (McGraw-Hill, New York, 2007), chap. 17Google Scholar
  17. 17.
    D. Kajfez, P. Guillon (eds.), Dielectric Resonators (Artech House, Dedham, MA, 1986)Google Scholar
  18. 18.
    Oxford Instruments, Cryostats for Electron Spin Resonance Spectroscopy., DF OI64802104 (2004).
  19. 19.
    R.R. Mett, J.W. Sidabras, I.S. Golovina, J.S. Hyde, Rev. Sci. Instrum. 79(9) (2008).Google Scholar
  20. 20.
    S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 245, 50 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 238, 1 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Y.E. Nesmelov, J.T. Surek, D.D. Thomas, J. Magn. Reson. 153, 7 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    C.P. Poole Jr, Electron Spin Resonance (Interscience Publishers, New York, 1967)Google Scholar
  24. 24.
    A. Belous, O. Ovchar, M. Valant, D. Suvorov, J. Appl. Phys. 92(7), 3917 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    J.E. Wertz, P. Auzins, Phys. Rev. 106, 484 (1957)ADSCrossRefGoogle Scholar
  26. 26.
    J. Lincke, D. Lässig, M. Kobalz, J. Bergmann, M. Handke, J. Möllmer, M. Lange, C. Roth, A. Möller, R. Staudt, H. Krautscheid, Inorg. Chem. 51(14), 7579 (2012)CrossRefGoogle Scholar
  27. 27.
    R. Fricke, H.G. Jerschkewitz, G. Öhlmann, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases 82(11), 3479 (1986).Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Stefan Friedländer
    • 1
  • Oleg Ovchar
    • 2
  • Horst Voigt
    • 1
  • Rolf Böttcher
    • 1
  • Anatolii Belous
    • 2
  • Andreas Pöppl
    • 1
    Email author
  1. 1.Institute of Experimental Physics II, Leipzig UniversityLeipzigGermany
  2. 2.Institute of General and Inorganic Chemistry, NASUKievUkraine

Personalised recommendations