Advertisement

Applied Magnetic Resonance

, Volume 45, Issue 10, pp 1063–1073 | Cite as

Multinuclear NMR Study of Structure and Mobility in Cyclic Model Lithium Conducting Systems

  • Jörg Thielen
  • Christoph F. Kins
  • Monika Schönhoff
  • Hans Wolfgang Spiess
Article

Abstract

The transport of the lithium ions is the basis of lithium ion conductivity of currently used electrolytes. Understanding how the transport of lithium ions within the matrix is influenced by the interactions with solvating moieties is needed to improve their performance. Along these lines well-defined model compounds based on cyclotriphosphazene (CTP) and hexaphenylbenzene (HPB) cores, bearing side groups of ethylene carbonate, a common solvent for lithium salts used as electrolytes in Li-ion batteries (Thielen et al. Chem. Mater, 23, 2120, 2011) and blended with different amounts of Lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) have been studied by multinuclear nuclear magnetic resonance (NMR) spectroscopy. The local dynamics of the matrix was probed by 1H and 31P NMR, while the local dynamics of the Li+ cations was unraveled by 7Li and 13C NMR. Transport of both ions was studied by pulsed-field gradient (PFG) NMR. Based on the different temperature dependences of the dynamics the bulk ion transport is not attributed to local dynamics, but to translational diffusion best characterized by PFG NMR. Although the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The results of NMR spectroscopy are in accord with the conjecture that the coordination between the cyclic carbonate functionality and the Li+-ion is too tight to allow for fast ion dynamics.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Magic Angle Spin Cyclotriphosphazene Magic Angle Spin Nuclear Magnetic Resonance Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank W. H. Meyer and G. Brunklaus for helpful discussions of different aspects of this work. We further thank Sebastian Jeremias for practical assistance with the PFG NMR experiments.

References

  1. 1.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)CrossRefGoogle Scholar
  2. 2.
    W. van Schalkwijk, B. Scrosati (eds.), Advances in Lithium-Ion Batteries (Kluwer Academic/Plenum, New York, 2002)Google Scholar
  3. 3.
    K. Xu, Chem. Rev. 104, 4303 (2004)CrossRefGoogle Scholar
  4. 4.
    J. Thielen, W.H. Meyer, K. Landfester, Chem. Mater. 23, 2120–2129 (2011)CrossRefGoogle Scholar
  5. 5.
    G.R. Strobl, The Physics of Polymers (Springer, Berlin, 1996)CrossRefGoogle Scholar
  6. 6.
    J. Thielen, Thesis, University of Mainz, http://www.ubm.opus.hbz-nrw.de/volltexte/2011/2852/pdf/doc.pdf
  7. 7.
    H.R. Allcock, Chemistry and Applications of Polyphosphazenes (Wiley, New York, 2003), p. 528Google Scholar
  8. 8.
    N. Kaskhedikar, M. Burjanadze, Y. Karatas, H.D. Wiemhöfer, Solid State Ionics 177, 3129 (2006)CrossRefGoogle Scholar
  9. 9.
    L. Jimenez-Garcia, A. Kaltbeitzel, W. Pisula, J.S. Gutmann, M. Klapper, K. Muellen, Angew. Chem. Int. Ed. 48, 9951 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Britz, W.H. Meyer, G. Wegner, Macromolecules 40, 7558 (2007)CrossRefADSGoogle Scholar
  11. 11.
    K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic Press, London, 1994)Google Scholar
  12. 12.
    M.R. Hansen, R. Graf, H.W. Spiess, Acc. Chem. Res. 46, 1996 (2013)CrossRefGoogle Scholar
  13. 13.
    C.P. Grey, N. Dupré, Chem. Rev. 104, 4493 (2004)CrossRefGoogle Scholar
  14. 14.
    K. Ogata, Salager, C.J. Kerr, A.E. Fraser, C. Ducati, A.J. Morris, S. Hofmann, C.P. Grey, Nature Commun. 5, 3217 (2014)CrossRefADSGoogle Scholar
  15. 15.
    T.L. Spencer, N.W. Plagos, D.H. Brouwer, G.R. Goward, Phys. Chem. Chem. Phys. 16, 2515 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry (Springer, Berlin, 1997)CrossRefGoogle Scholar
  17. 17.
    S.A. Krachkovskiy, A.D. Pauric, I.C. Halalay, G.R. Goward, J. Phys. Chem. Lett. 4, 3940 (2013)CrossRefGoogle Scholar
  18. 18.
    U. Boehme, U. Scheler, Chem. Phys. Lett. 435, 342 (2007)CrossRefADSGoogle Scholar
  19. 19.
    J. Muntean, L. Stock, R. Botto, J. Magn. Reson. 76, 540 (1988)ADSGoogle Scholar
  20. 20.
    B. Langer, I. Schnell, H.W. Spiess, A.-R. Grimmer, J. Magn. Reson. 138, 182 (1999)CrossRefADSGoogle Scholar
  21. 21.
    M. Kunze, Y. Karatas, H.-D. Wiemhöfer, H. Eckert, M. Schönhoff, Phys. Chem. Chem. Phys. 12, 6844 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Kunze, Y. Karatas, H.-D. Wiemhöfer, M. Schönhoff, Macromolecules 45, 8328 (2012)CrossRefADSGoogle Scholar
  23. 23.
    L. van Wüllen, T.K.-J. Köster, H.-D. Wiemhöfer, N. Kashkedikar, Chem. Mater. 20, 7399 (2008)CrossRefGoogle Scholar
  24. 24.
    N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)CrossRefADSGoogle Scholar
  25. 25.
    Ü. Akbey, S. Granados-Focil, B. Coughlin, R. Graf, H.W. Spiess, J. Phys. Chem. B 113, 9151 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Yang, A. Xiao, B.L. Lucht, J. Mol. Liqu. 154, 131 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Karatas, N. Kaskhedikar, M. Burjanadze, H.-D. Wiemhöfer, Macromol. Chem. Phys. 207, 419 (2006)CrossRefGoogle Scholar
  28. 28.
    W. Gorecki, W. Jeannin, E. Belorizky, C. Roux, M. Armand, J. Phys.: Condens. Matter 7, 6823 (1995)ADSGoogle Scholar
  29. 29.
    K. Hayamizu, Y. Aihara, W.S. Price, J. Chem. Phys. 113, 4785 (2000)CrossRefADSGoogle Scholar
  30. 30.
    H.W. Spiess, Macromolecules 43, 5479 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Jörg Thielen
    • 1
  • Christoph F. Kins
    • 1
  • Monika Schönhoff
    • 2
  • Hans Wolfgang Spiess
    • 1
  1. 1.Max Planck Institute for Polymer ResearchMainzGermany
  2. 2.Institute of Physical Chemistry, University of MuensterMünsterGermany

Personalised recommendations