Advertisement

Applied Magnetic Resonance

, Volume 45, Issue 6, pp 573–619 | Cite as

Three-Pulse ELDOR Theory Revisited

  • K. M. Salikhov
  • I. T. Khairuzhdinov
  • R. B. Zaripov
Article

Abstract

The current theory of three-pulse electron double resonance (PELDOR) has been generalized to the case, when paramagnetic particles (spin labels) in pairs or groups have the electron paramagnetic resonance (EPR) spectra, which overlap essentially or coincide. The PELDOR signal modulation induced by the dipole–dipole interaction between paramagnetic spin ½ particles in pairs embedded in disordered systems has been analyzed comprehensively. It has been shown that the PELDOR signal contains additional terms in contrast to the situation considered in the current theory, when the EPR spectra of the spin labels in the pairs do not overlap. In disordered systems, the pairs of spin labels have the characteristic dipolar interaction frequency. According to the current theory for pairs of spin labels, the PELDOR signal reveals the modulation with this characteristic frequency. The additional terms, which are obtained in this work, do not change the modulation frequency of the PELDOR signal for pairs of spin labels. However, these additional terms should be taken into account when analyzing the amplitude of the PELDOR signal and the amplitude of the modulation of the PELDOR signal. The consistent approach to treating the PELDOR data for the groups containing three or more spin labels has been outlined on the basis of the results for pairs of spin labels. It has been also analyzed how the spin flips and molecular motion or molecular isomerization can affect the manifestation of the interaction between the spin labels in PELDOR experiments. PELDOR experiments for the stable biradicals (biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin labels and biradicals II containing 3-imidazoline spin labels) have been performed. The results have been interpreted within the theory developed in this work.

Notes

Acknowledgments

We are grateful to Prof. V.F. Tarasov and Dr. V.K. Voronkova for discussions and support. We express our gratitude to Prof. G. Jeschke and Dr. A.G. Maryasov for the fruitful discussion of our results and their comment that the three-pulse ELDOR considered in this work is similar to the “2 + 1” pulse train electron spin echo method. We thank Prof. G. Jeschke and Dr. L. Kulik for the biradicals they provided us with. We are very pleased to thank L.V. Mosina for language editing of our manuscript. This work was supported by the grant for the leading scientific school of the Russian Federation NSh-4653.2014.2.

References

  1. 1.
    A.D. Milov, A.G. Maryasov, Yu.D. Tsvetkov, Appl. Magn. Reson. 15, 107–143 (1998)CrossRefGoogle Scholar
  2. 2.
    A.G. Maryasov, Yu.D. Tsvetkov, J. Raap, Appl. Magn. Reson. 14, 101–114 (1998)CrossRefGoogle Scholar
  3. 3.
    G. Jeschke, Y. Polyhach, Phys. Chem. Chem. Phys. 9, 1895–1910 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Moebius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and Their Model Systems (RSC Publishing, Cambridge, 2009)Google Scholar
  5. 5.
    Yu.D. Tsvetkov, A.D. Milov, A.G. Maryasov, Uspekhi Khimii (in Russian) 77, 487–520 (2008)Google Scholar
  6. 6.
    G. Jeschke, Ann. Rev. Phys. Chem. 63, 419–446 (2012)CrossRefADSGoogle Scholar
  7. 7.
    A.D. Milov, Yu.D. Tsvetkov, A.G. Maryasov, M. Gobbo, C. Prinzivalli, M. De Zotti, F. Formaggio, C. Toniolo, Appl. Magn. Reson. 44, 495–508 (2013)CrossRefGoogle Scholar
  8. 8.
    K.M. Salikhov, A.G. Semenov, Yu.D. Tsvetkov, Electron Spin Echo and Its Applications (Nauka, Novosibirsk, 1976)Google Scholar
  9. 9.
    W.B. Mims, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum Press, New York, 1972), pp. 263–351CrossRefGoogle Scholar
  10. 10.
    K.M. Salikhov, Yu.D. Tsvetkov, in Time-Domain ESR Spectroscopy, ed. by L. Kevan, R. Schwartz (Wiley, New York, 1979)Google Scholar
  11. 11.
    A.M. Raitsimring, K.M. Salikhov, Bull. Magn. Reson. 7, 184–195 (1985)Google Scholar
  12. 12.
    V.V. Kurshev, A.M. Raitsimring, Yu.D. Tsvetkov, J. Magn. Reson. 81, 441–454 (1989)ADSGoogle Scholar
  13. 13.
    V.V. Kurshev, A.M. Raitsimring, T. Ichikawa, J. Phys. Chem. 95, 3564–3568 (1991)CrossRefGoogle Scholar
  14. 14.
    V.F. Yudanov, K.M. Salikhov, G.M. Zhidomirov, Yu.D. Tsvetkov, Theor. Eksper. Khim. 5, 663–668 (1969)Google Scholar
  15. 15.
    V.V. Konovalov, S.A. Dzuba, A.M. Raitsimring, K.M. Salikhov, Yu.D. Tsvetkov, Khim. Vysokikh Energii. 14, 525–530 (1980)Google Scholar
  16. 16.
    A.D. Milov, K.M. Salikhov, M.D. Schirov, Fiz. Tverd. Tela (in Russian) 23, 975–982 (1981)Google Scholar
  17. 17.
    R.E. Martin, M. Pannier, F. Diederich, V. Gramlich, M. Hubrich, H.W. Spiess, Angew. Chem. Int. Ed. Engl. 37, 2834–2837 (1998)CrossRefGoogle Scholar
  18. 18.
    G. Jeschke, A. Koch, U. Jonas, A. Godt, J. Magn. Reson. 155, 72 (2001)CrossRefADSGoogle Scholar
  19. 19.
    G. Jeschke, M. Sajid, M. Schulte, A. Godt, Phys. Chem. Chem. Phys. 11, 6580–6591 (2009)CrossRefGoogle Scholar
  20. 20.
    A.D. Milov, Yu.D. Tsvetkov, J. Raap, Appl. Magn. Reson. 19, 215–226 (2000)CrossRefGoogle Scholar
  21. 21.
    A.D. Milov, B.D. Naumov, Yu.D. Tsvetkov, Appl. Magn. Reson. 26, 587–599 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Weber, O. Schiemann, B. Bode, T.F. Prisner, J. Magn. Reson. 157, 277–285 (2002)CrossRefADSGoogle Scholar
  23. 23.
    J.R. Klauder, P.W. Anderson, Phys. Rev. 125, 912–916 (1962)CrossRefADSGoogle Scholar
  24. 24.
    K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42, 255–276 (1981)ADSGoogle Scholar
  25. 25.
    A.D. Milov, A.B. Ponomarev, Yu.D. Tsvetkov, Chem. Phys. Lett. 110, 67–72 (1984)CrossRefADSGoogle Scholar
  26. 26.
    A.D. Milov, Yu.D. Tsvetkov, Appl. Magn. Reson. 18, 217–226 (2000)CrossRefGoogle Scholar
  27. 27.
    A.G. Maryasov, Yu.D. Tsvetkov, Appl. Magn. Reson. 18, 583–605 (2000)CrossRefGoogle Scholar
  28. 28.
    M. Benatti, A. Weber, J. Antonic, D.L. Perlstein, J. Robblee, J. Stubbe, J. Am. Chem. Soc. 125, 14988–14989 (2003)CrossRefGoogle Scholar
  29. 29.
    M.K. Bowman, A.G. Maryasov, N. Kim, V.J. Derose, Appl. Magn. Reson. 26, 23–40 (2004)CrossRefGoogle Scholar
  30. 30.
    G. Jeschke, G. Panek, A. Godt, A. Bender, H. Paulsen, Appl. Magn. Reson. 26, 223–244 (2004)CrossRefGoogle Scholar
  31. 31.
    A.D. Milov, R.I. Samoilova, Yu.D. Tsvetkov, F. Formaggio, C. Toniolo, J. Raap, Appl. Magn. Reson. 29, 703–716 (2005)CrossRefGoogle Scholar
  32. 32.
    A.G. Maryasov, M.K. Bowman, Yu.D. Tsvetkov, Appl. Magn. Reson. 30, 683–701 (2006)CrossRefGoogle Scholar
  33. 33.
    V.P. Denisenkov, T.F. Prisner, J. Stubbe, M. Benatti, Appl. Magn. Reson. 29, 375–384 (2005)CrossRefGoogle Scholar
  34. 34.
    G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)CrossRefGoogle Scholar
  35. 35.
    M.K. Bowman, A.G. Maryasov, J. Magn. Reson. 185, 270–282 (2007)CrossRefADSGoogle Scholar
  36. 36.
    R. Ward, A. Bowman, E. Sozudogru, H. El-Mkami, T. Owen-Hughes, D.G. Norman, J. Magn. Reson. 207, 164–167 (2010)CrossRefADSGoogle Scholar
  37. 37.
    O.S. Fedorova, Yu.D. Tsvetkov, Acta Naturae. 5, 1–32 (2013)Google Scholar
  38. 38.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961)Google Scholar
  39. 39.
    A.D. Milov, A.D. Ponomarev, Yu.D. Tsvetkov, J. Struct. Chem. 25, 710–713 (1984)CrossRefGoogle Scholar
  40. 40.
    T. Von Hagens, Y. Polyhach, M. Sajid, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 15, 5854–5866 (2013)CrossRefGoogle Scholar
  41. 41.
    G.M. Zhidomirov, K.M. Salikhov, ZhETP 56, 1933–1939 (1969)Google Scholar
  42. 42.
    L.V. Kulik, S.A. Dzuba, I.A. Grigoryev, Yu.D. Tsvetkov, Chem. Phys. Lett. 343, 315–324 (2001)CrossRefADSGoogle Scholar
  43. 43.
    B.E. Bode, D. Margraf, J. Plackmeyer, G. Duerner, T.F. Prisner, O. Schiemann, J. Am. Chem. Soc. 129, 6736–6745 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • K. M. Salikhov
    • 1
    • 2
  • I. T. Khairuzhdinov
    • 1
  • R. B. Zaripov
    • 1
  1. 1.Zavoisky Physical-Technical InstituteRussian Academy of SciencesKazanRussian Federation
  2. 2.Kazan Federal UniversityKazanRussian Federation

Personalised recommendations