Advertisement

Applied Magnetic Resonance

, Volume 45, Issue 4, pp 315–328 | Cite as

Study of Self-Diffusion of Silicone MQ Resins in Chloroform Solutions by Pulsed Field-Gradient NMR Spectroscopy

  • Sergey G. Vasil’evEmail author
  • Vitaly I. Volkov
  • Elena A. Tatarinova
  • Aziz M. Muzafarov
Article

Abstract

The self-diffusion of silicone MQ copolymers in solutions with chloroform was studied by pulsed field-gradient nuclear magnetic resonance over a wide range of macromolecular concentrations. The highly branched structure of the molecules reveals some characteristic features of the translational mobility. The studies were performed with the initial MQ copolymer as well as with the narrow-dispersed fractions obtained from it. The data indicate the differences in dynamics between fractions. The appearance of the species with different self-diffusivity with increasing of the polymer concentration in solutions was observed. Such behavior was attributed to the formation of aggregates of macromolecules in solution. The results show that the molecular weight influences the diffusion behavior of the MQ resins in solutions. The diffusion of the MQ resins reveals features characteristic for rigid macromolecular structures rather than flexible polymers. Differences in translational dynamics of MQ copolymers, linear flexible polymers and particle-like macromolecules are discussed.

Keywords

Nuclear Magnetic Resonance Molecular Mass Distribution Silicone Resin Trimethylsiloxy Diffusion Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Professor Vladimir Skirda for helpful discussions.

References

  1. 1.
    K. Yoshii, S. Machida, K. Horie, M. Itoh, J. Non-Cryst. Solids 272(2–3), 75–84 (2000)CrossRefADSGoogle Scholar
  2. 2.
    M. Butts, J. Cella, C.D. Wood, G. Gillette, R. Kerboua, J. Leman, L. Lewis, S. Rajaraman, S. Rubinsztajn, F. Schattenmann, J. Stein, J. Wengrovius, D. Wicht, Silicones, in Encyclopedia of Polymer Science and Technology (John Wiley & Sons Inc, New Jersey, 2002)Google Scholar
  3. 3.
    B. Arkles, MRS Bull. 26(05), 402–408 (2001)CrossRefGoogle Scholar
  4. 4.
    K. Yoshii, T. Yamashita, S. Machida, K. Horie, M. Itoh, F. Nishida, S.Y. Morino, J. Non-Cryst. Solids 246(1–2), 90–103 (1999)CrossRefADSGoogle Scholar
  5. 5.
    X. Xu, C. Wu, B. Zhang, H. Dong, J. Appl. Polym. Sci. 128(6), 4189–4200 (2013)CrossRefGoogle Scholar
  6. 6.
    M.V. Mironova, E.A. Tatarinova, I.B. Meshkov, A.M. Muzafarov, V.G. Kulichikhin, Polym. Sci. Ser. A. 54(3), 177–186 (2012)CrossRefGoogle Scholar
  7. 7.
    S.B. Lin, J. Appl. Polym. Sci. 54(13), 2135–2145 (1994)CrossRefGoogle Scholar
  8. 8.
    A.M. Muzafarov, N.G. Vasilenko, E.A. Tatarinova, G.M. Ignat’eva, V.M. Myakushev, M.A. Obrezkova, I.B. Meshkov, N.V. Voronina, O.V. Novozhilov, Poly. Sci. Ser. C. 53(1), 48–60 (2011)CrossRefGoogle Scholar
  9. 9.
    N.V. Voronina, I.B. Meshkov, V.D. Myakushev, T.V. Laptinskaya, V.S. Papkov, M.I. Buzin, M.N. Il’ina, A.N. Ozerin, A.M. Muzafarov, J. Polym. Sci. Part A: Polym. Chem. 48(19), 4310–4322 (2010)CrossRefADSGoogle Scholar
  10. 10.
    G. Fleischer, H. Sillescu, V.D. Skirda, Polymer 35(9), 1936–1941 (1994)CrossRefGoogle Scholar
  11. 11.
    J. Rubio Retama, B. Frick, T. Seydel, M. Stamm, A. Fernandez Barbero, E. López Cabarcos, Macromolecules 41(13), 4739–4745 (2008)CrossRefADSGoogle Scholar
  12. 12.
    A.I. Sagidullin, A.M. Muzafarov, M.A. Krykin, A.N. Ozerin, V.D. Skirda, G.M. Ignat’eva, Macromolecules 35(25), 9472–9479 (2002)CrossRefADSGoogle Scholar
  13. 13.
    I.B. Rietveld, D. Bedeaux, Macromolecules 33(21), 7912–7917 (2000)CrossRefADSGoogle Scholar
  14. 14.
    M.A. Krykin, V.I. Volkov, E.V. Volkov, N.M. Surin, L.A. Ozerina, A.M. Muzafarov, A.N. Ozerin, Appl. Magn. Reson. 29(3), 459–469 (2005)CrossRefGoogle Scholar
  15. 15.
    G. Fleischer, G. Fytas, D. Vlassopoulos, J. Roovers, N. Hadjichristidis, Physica A 280(3–4), 266–278 (2000)CrossRefADSGoogle Scholar
  16. 16.
    Y.J. Wang, H. Therien-Aubin, W.E. Baille, J.T. Luo, X.X. Zhu, Polymer 51(11), 2345–2350 (2010)CrossRefGoogle Scholar
  17. 17.
    W.E. Baille, X.X. Zhu, S. Fomine, Macromolecules 37(23), 8569–8576 (2004)CrossRefADSGoogle Scholar
  18. 18.
    S. Vasil’ev, V. Volkov, E. Tatarinova, A. Muzafarov, Appl. Magn. Reson. 44(9), 1015–1025 (2013)Google Scholar
  19. 19.
    E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42(1), 288–292 (1965)CrossRefADSGoogle Scholar
  20. 20.
    V.D. Skirda, V.I. Sundukov, A.I. Maklakov, O.E. Zgadzai, I.R. Gafurov, G.I. Vasiljev, Polymer 29(7), 1294–1300 (1988)CrossRefGoogle Scholar
  21. 21.
    H. Walderhaug, O. Söderman, D. Topgaard, Prog. Nucl. Magn. Reson. Spectrosc. 56(4), 406–425 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Röding, D. Bernin, J. Jonasson, A. Särkkä, D. Topgaard, M. Rudemo, M. Nydén, J. Magn. Reson. 222, 105–111 (2012)CrossRefADSGoogle Scholar
  23. 23.
    A. Svensson, D. Topgaard, L. Piculell, O. Söderman, J. Phys. Chem. B 107(47), 13241–13250 (2003)CrossRefGoogle Scholar
  24. 24.
    V.D. Skirda, V.I. Sundukov, A.I. Maklakov, G.I. Vasil’ev, Polym. Sci. U.S.S.R. 30(5), 1102–1110 (1988)CrossRefGoogle Scholar
  25. 25.
    P.G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)Google Scholar
  26. 26.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1988)Google Scholar
  27. 27.
    I.V. Nesmelova, V.D. Skirda, V.D. Fedotov, Biopolymers 63(2), 132–140 (2002)CrossRefGoogle Scholar
  28. 28.
    M. Tokuyama, I. Oppenheim, Phys. Rev. E 50(1), R16–R19 (1994)CrossRefADSGoogle Scholar
  29. 29.
    S. Seiffert, W. Oppermann, Polymer 49(19), 4115–4126 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Sergey G. Vasil’ev
    • 1
    Email author
  • Vitaly I. Volkov
    • 1
  • Elena A. Tatarinova
    • 2
  • Aziz M. Muzafarov
    • 2
  1. 1.Institute of Problems of Chemical PhysicsChernogolovkaRussian Federation
  2. 2.Institute of Synthetic Polymeric MaterialsMoscowRussian Federation

Personalised recommendations