Advertisement

Applied Magnetic Resonance

, Volume 44, Issue 6, pp 735–743 | Cite as

The Influence of Pressure in Paracetamol Tablet Compaction on 14N Nuclear Quadrupole Resonance Signal

  • J. Lužnik
  • J. Pirnat
  • V. Jazbinšek
  • Z. Lavrič
  • S. Srčič
  • Z. Trontelj
Article

Abstract

14N nuclear quadrupole resonance (14N NQR) of several commercially available paracetamol tablets was measured. The spectra of two polymorphs are presented. The linewidths of the correspondent 14N NQR lines in all the measured samples containing the room-temperature stable monoclinic polymorph were noticeably different. We proved experimentally that the linewidth differences are the consequence of different compacting pressure in the production of tablets.

Keywords

Active Pharmaceutical Ingredient Nuclear Quadrupole Resonance Compaction Pressure Active Pharmaceutical Ingredient Nuclear Quadrupole Resonance Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Slovenian Research Agency (Program P2-0348) and by the EU-FP7 Project CONPHIRMER.

References

  1. 1.
    T.P. Das, E.L. Hahn, Nuclear Quadrupole Resonance Spectroscopy (Academic Press, New York, 1958)Google Scholar
  2. 2.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961)Google Scholar
  3. 3.
    A.I. Wertheimer, J. Norris, Res. Social Admin. Pharm. 5, 4–16 (2009)CrossRefGoogle Scholar
  4. 4.
    Millions of counterfeit drugs seized in the EU, http://topnews.in/millions-counterfeit-drugs-seized-eu-299089
  5. 5.
    J.Barras, K. Althoefer, M.D. Rowe, I.J. Poplett, J.A.S. Smith, Appl. Magn. Reson., publ. online 22 March 2012Google Scholar
  6. 6.
    G.-W. An, H. Zhang, X.-L. Cheng, Q.-L. Zhuo, Y.-C. Lv, Struct. Chem. 19(4), 613–617 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Lužnik, J. Pirnat, V. Jazbinšek, T. Apih, A. Gregorovič, R. Blinc, J. Seliger, Z. Trontelj, Appl. Phys. Lett. 89, 123509–123511 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J. Lužnik, J. Pirnat, V. Jazbinšek, T. Apih, R. Blinc, J. Seliger, Z. Trontelj, J. Appl. Phys. 102, 084903 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    R.A. Marino, S.M. Klainer, J. Chem. Phys. 67, 3388 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    M. Haisa, S. Kashino, H. Maeda, Acta Cryst. B30, 2510 (1974)Google Scholar
  11. 11.
    M. Haisa, S. Kashino, R. Kawai, H. Maeda, Acta Cryst. B32, 1283 (1976)Google Scholar
  12. 12.
    I.D.H. Oswald, D.R. Allan, P.A. McGregor, W.D.S. Motherwell, S. Parsons, C.R. Pulham, Acta Cryst. B58, 1057 (2002)Google Scholar
  13. 13.
    G. Nichols, C.S. Frampton, J. Pharm. Sci. 87(6), 684 (1998)CrossRefGoogle Scholar
  14. 14.
    B. Govedarica, I. Ilić, R. Šibanc, R. Dreu, S. Srčič, Powder Tech. 225, 43 (2012)CrossRefGoogle Scholar
  15. 15.
    Z. Lavrič, J. Lužnik, Z. Trontelj, S. Srčič, Eur. J. Pharmac. Sci. 44, Suppl.1 (Proceedings 4th BBBB Conference on Pharmaceutical Sciences, Bled, Slovenia), 113 (2011)Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • J. Lužnik
    • 1
  • J. Pirnat
    • 1
  • V. Jazbinšek
    • 1
  • Z. Lavrič
    • 2
  • S. Srčič
    • 2
  • Z. Trontelj
    • 1
  1. 1.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  2. 2.Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations