Applied Magnetic Resonance

, Volume 44, Issue 5, pp 583–594 | Cite as

Measuring Cu2+-Nitroxide Distances Using Double Electron–Electron Resonance and Saturation Recovery

Article

Abstract

Distance measurements were obtained between a bound Cu2+ and a spin label on two polypeptides of differing length using the double electron–electron resonance (DEER) and saturation recovery experiments. Distance distributions obtained from the DEER results resolved differences between the average distance and distribution of distances for each peptide. An average distance was also obtained for each peptide using the relaxation-based saturation recovery experiment. Predicted average distances for the relaxation-based method, <rESR>, were calculated using the distance distributions from the DEER experiment. The predicted <rESR> values were similar to those measured by saturation recovery; both were biased to shorter values compared with the DEER results. The breadth of the distance distributions had a significant effect on the average distance measured by saturation recovery. This work highlights the advantage of using DEER to measure metal-nitroxide distances in that the average distances measured are less biased than in relaxation-based techniques.

References

  1. 1.
    B.K. Shin, S. Saxena, J. Phys. Chem. A 115, 9590–9602 (2011)CrossRefGoogle Scholar
  2. 2.
    L. Hong, T.M. Carducci, W.D. Bush, C.G. Dudzik, G.L. Millhauser, J.D. Simon, J. Phys. Chem. B 114, 11261–11271 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Jun, J.R. Gillespie, B.K. Shin, S. Saxena, Biochemistry 48, 10724–10732 (2009)CrossRefGoogle Scholar
  4. 4.
    B.K. Shin, S. Saxena, Biochemistry 47, 9117–9123 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Jun, S. Saxena, Angew. Chem. Int. Ed. 46, 3959–3961 (2007)CrossRefGoogle Scholar
  6. 6.
    C.G. Dudzik, E.D. Walter, G.L. Millhauser, Biochemistry 50, 1771–1777 (2011)CrossRefGoogle Scholar
  7. 7.
    S.C. Drew, S. Ling Leong, C.L.L. Pham, D.J. Tew, C.L. Masters, L.A. Miles, R. Cappai, K.J.J. Barnham, J. Am. Chem. Soc. 130, 7766–7773 (2008)CrossRefGoogle Scholar
  8. 8.
    B.K. Shin, S. Saxena, J. Chem. Phys. B 115, 15067–15078 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Kallay, A. David, S. Timari, E.M. Nagy, D. Sanna, E. Garribba, G. Micera, P. De Bona, G. Pappalardo, E. Rizzarelli, I. Sovago, Dalton Trans. 40, 9711–9721 (2011)CrossRefGoogle Scholar
  10. 10.
    E.D. Walter, D.J. Stevens, A.R. Spevacek, M.P. Visconte, A. Dei Rossi, G.L. Millhauser, Curr. Protein Pept. Sci. 10, 529–535 (2009)CrossRefGoogle Scholar
  11. 11.
    C.S. Burns, E. Aronoff-Spencer, C.M. Dunham, P. Lario, N.I. Avdievich, W.E. Antholine, M.M. Olmstead, A. Vrielink, G.J. Gerfen, J. Peisach, W.G. Scott, G.L. Millhauser, Biochemistry 41, 3991–4001 (2002)CrossRefGoogle Scholar
  12. 12.
    E. Aronoff-Spencer, C.S. Burns, N.I. Avdievich, G.J. Gerfen, J. Peisach, W.E. Antholine, H.L. Ball, F.E. Cohen, S.B. Prusiner, G.L. Millhauser, Biochemistry 39, 13760–13771 (2000)CrossRefGoogle Scholar
  13. 13.
    S. Ruthstein, K.M. Stone, T.F. Cunningham, M. Ji, M. Cascio, S. Saxena, Biophys. J. 99, 2497–2506 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Sharpe, M.D. Krzyaniak, S. Xu, J. McCracken, S. Ferguson-Miller, Biochemistry 48, 328–335 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Fittipaldi, R.A. Steiner, M. Matsushita, B.W. Dijkstra, E.J.J. Groenen, M. Huber, Biophys. J. 85, 4047–4054 (2003)CrossRefGoogle Scholar
  16. 16.
    I.M. Kooter, R.A. Steiner, B.W. Dijkstra, P.I. van Noort, M.R. Egmond, M. Huber, Eur. J. Biochem. 269, 2971–2979 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Käss, F. MacMillan, B. Ludwig, T.F. Prisner, J. Chem. Phys. B 104, 5362–5371 (2000)CrossRefGoogle Scholar
  18. 18.
    S. Lyubenova, M.K. Siddiqui, M.J.M. Penning de Vries, B. Ludwig, T.F. Prisner, J. Chem. Phys. B 111, 3839–3846 (2007)CrossRefGoogle Scholar
  19. 19.
    Z. Yang, M.R. Kurpiewski, M. Ji, J.E. Townsend, P. Mehta, L. Jen-Jacobson, S. Saxena, Proc. Natl. Acad. Sci. USA. 109, E993–E1000 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Yang, M. Ji, S. Saxena, Appl. Magn. Reson. 39, 487–500 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    I.M.C. van Amsterdam, M. Ubbink, G.W. Canters, M. Huber, Angew. Chem. Int. Ed. 42, 62–64 (2003)CrossRefGoogle Scholar
  23. 23.
    C.W.M. Kay, H. El Mkami, R. Cammack, R.W. Evans, J. Am. Chem. Soc. 129, 4868–4869 (2007)CrossRefGoogle Scholar
  24. 24.
    J.E. Lovett, A.M. Bowen, C.R. Timmel, M.W. Jones, J.R. Dilworth, D. Caprotti, S.G. Bell, L.L. Wong, J. Harmer, Phys. Chem. Chem. Phys. 11, 6840–6848 (2009)CrossRefGoogle Scholar
  25. 25.
    A.D. Milov, A.B. Ponomarev, Y.D. Tsvetkov, Chem. Phys. Lett. 110, 67–72 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Yang, J. Becker, S. Saxena, J. Magn. Reson. 188, 337–343 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    B.E. Bode, J. Plackmeyer, T.F. Prisner, O. Schiemann, J. Phys. Chem. A 112, 5064–5073 (2008)CrossRefGoogle Scholar
  28. 28.
    E. Narr, A. Godt, G. Jeschke, Angew. Chem. Int. Ed. 41, 3907–3910 (2002)CrossRefGoogle Scholar
  29. 29.
    S.S. Eaton, G.R. Eaton, Biological Magnetic Resonance, ed. L.J. Berliner, S.S. Eaton, and G. R. Eaton (Kluwer Academic, New York, 2000), p. 29–154Google Scholar
  30. 30.
    R. MacArthur, M.H. Sazinsky, H. Kühne, D.A. Whittington, S.J. Lippard, G.W. Brudvig, J. Am. Chem. Soc. 124, 13392–13393 (2002)CrossRefGoogle Scholar
  31. 31.
    Y. Zhou, B.E. Bowler, K. Lynch, S.S. Eaton, G.R. Eaton, Biophys. J. 79, 1039–1052 (2000)CrossRefGoogle Scholar
  32. 32.
    D. Ulyanov, B.E. Bowler, G.R. Eaton, S.S. Eaton, Biophys. J. 95, 5306–5316 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    D.J. Hirsh, W.F. Beck, J.B. Innes, G.W. Brudvig, Biochemistry 31, 532–541 (1992)CrossRefGoogle Scholar
  34. 34.
    M.H. Rakowsky, K.M. More, A.V. Kulikov, G.R. Eaton, S.S. Eaton, J. Am. Chem. Soc. 117, 2049–2057 (1995)CrossRefGoogle Scholar
  35. 35.
    S. Pornsuwan, C.E. Schafmeister, S. Saxena, J. Phys. Chem. C 112, 1377–1384 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Pornsuwan, G. Bird, C.E. Schafmeister, S. Saxena, J. Am. Chem. Soc. 128, 3876–3877 (2006)CrossRefGoogle Scholar
  37. 37.
    S. Jun, J.S. Becker, M. Yonkunas, R. Coalson, S. Saxena, Biochemistry 45, 11666–11673 (2006)CrossRefGoogle Scholar
  38. 38.
    E.D. Walter, D.J. Stevens, M.P. Visconte, G.L. Millhauser, J. Am. Chem. Soc. 129, 15440–15441 (2007)CrossRefGoogle Scholar
  39. 39.
    C.D. Syme, R.C. Nadal, S.E.J. Rigby, J.H. Viles, J. Biol. Chem. 279, 18169–18177 (2004)CrossRefGoogle Scholar
  40. 40.
    Z. Yang, D. Kise, S. Saxena, J. Phys. Chem. B 114, 6165–6174 (2010)CrossRefGoogle Scholar
  41. 41.
    G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)CrossRefGoogle Scholar
  42. 42.
    C.K. Mathews, K.E.V. Holde, K.G. Ahern, Biochemistry, 3rd edn. (Prentice Hall, 1999), p. 166Google Scholar
  43. 43.
    B.H. Robinson, D.A. Haas, C. Mailer, Science 263, 490–493 (1994)ADSCrossRefGoogle Scholar
  44. 44.
    N. Bloembergen, S. Shapiro, P.S. Pershan, J.O. Artman, Phys. Rev. 114, 445–459 (1959)ADSCrossRefGoogle Scholar
  45. 45.
    N. Bloembergen, Physica 15, 386–426 (1949)ADSCrossRefGoogle Scholar
  46. 46.
    N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679–712 (1948)ADSCrossRefGoogle Scholar
  47. 47.
    A.V. Kulikov, G.I. Likhtenstein, Adv. Mol. Relax. Interact. Processes 10, 47–79 (1977)CrossRefGoogle Scholar
  48. 48.
    D.J. Hirsh, G.W. Brudvig, Nat. Protoc. 2, 1770–1781 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Jessica Sarver
    • 1
  • K. Ishara Silva
    • 1
  • Sunil Saxena
    • 1
  1. 1.Department of ChemistryUniversity of PittsburghPittsburghUSA

Personalised recommendations