Applied Magnetic Resonance

, Volume 44, Issue 1–2, pp 41–53 | Cite as

Mobile Low-Field 1H NMR Spectroscopy Desktop Analysis of Biodiesel Production

  • Yamila Garro Linck
  • M. H. M. Killner
  • E. Danieli
  • B. Blümich


Biodiesel produced mainly by the base-catalyzed transesterification of vegetable oils or animal fats with a short chain alcohol, has become an attractive alternative to petroleum-based diesel fuel. Even though high-field 1H nuclear magnetic resonance (NMR) is a reliable method for biodiesel quality control, it is restricted by its poor mobility and expensive superconducting coils. As an alternative, this study presents a mobile low-field 1H NMR spectrometer for the analysis of biodiesel samples derived from different feedstock oils. The low-field 1H NMR spectra of all the compounds coexisting in a typical transesterification reaction such as rapeseed oil, rapeseed biodiesel, methanol, and glycerol, could be clearly differentiated. Field-dependent characteristic parameters such as relaxation times are provided. The degree of saturation of the different biofuels samples could be reliably estimated via integration of the resolved signals of the spectra. The obtained results agreed well with those measured at high-field 1H NMR. Since this compositional information is directly related to the biodiesel properties, the presented mobile low-field 1H NMR device built from permanent magnets arrayed in a Halbach geometry, constitutes an excellent alternative tool for biodiesel quality control.


Nuclear Magnetic Resonance Transesterification Reaction Linolenic Acid Methyl Ester Fame Profile Oleic Acid Methyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Deutsche Forschungsgemeinschaft (DFG), Deutscher Akademischer Austausch Dienst (DAAD) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support of this project.


  1. 1.
    A.C. Pinto, L.L.N. Guarieiro, M.J.C. Rezende, N.M. Ribeiro, E.A. Torres, W.A. Lopes, P.A.P. de Pereira, J.B. de Andrade, J. Braz. Chem. Soc. 16, 1313 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Li, H. Zhang, W. Xue, Eur. J. Lipid Sci. Technol. 109, 1088 (2007)CrossRefGoogle Scholar
  3. 3.
    J.M. Marchetti, V.U. Miguel, A.F. Errazu, Renew. Sustain. Energy Rev. 11, 1300 (2007)CrossRefGoogle Scholar
  4. 4.
    L.C. Meher, D. Vidya Sagar, S.N. Naik, Renew. Sustain. Energy Rev. 10, 248 (2006)CrossRefGoogle Scholar
  5. 5.
    G. Knothe, J. Van Gerpen, J. Krahl (eds.), The biodiesel handbook (AOCS Press, Champaign, 2005)Google Scholar
  6. 6.
    G. Knothe, Fuel Process. Technol. 86, 1059 (2005)CrossRefGoogle Scholar
  7. 7.
    M.G. Trevisan, C.M. Garcia, U. Schuchardt, R.J. Poppi, Talanta 74, 971 (2008)CrossRefGoogle Scholar
  8. 8.
    M.H.M. Killner, J.J.R. Rohwedder, C. Pasquini, Fuel 90, 3268 (2011)CrossRefGoogle Scholar
  9. 9.
    G. Knothe, JAOCS 77, 489 (2000)CrossRefGoogle Scholar
  10. 10.
    R. Richard, Y. Li, B. Dubreuil, S. Thiebaud-Roux, L. Prat, Bioresour. Technol. 102, 6702 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Miyake, K. Yokomizo, N. Matsuzaki, JAOCS 75, 1091 (1998)Google Scholar
  12. 12.
    G. Knothe, J.A. Kenar, Eur. J. Lipid Sci. Technol. 106, 88 (2004)CrossRefGoogle Scholar
  13. 13.
    J.K. Satyarthi, D. Srinivas, P. Ratnasamy, Energy Fuels 23, 2273 (2009)CrossRefGoogle Scholar
  14. 14.
    M. ter Horst, S. Urbin, R. Burton, C. MacMillan, Lipid Technol. 21, 1 (2009)CrossRefGoogle Scholar
  15. 15.
    T.W. Skloss, A.J. Kim, J.F. Haw, Anal. Chem. 66, 536 (1994)CrossRefGoogle Scholar
  16. 16.
    C.A. McGill, A. Nordon, D. Littlejohn, Analyst 127, 287 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    M. Cudaj, T. Hofe, M. Wilhelm, M. A. Vargas, and G. Guthausen, in Magnetic Resonance in Food Science: An Exciting Future, ed. by J-P Renou, G. A. Webb, and P. S Belton, (The Royal Society of Chemistry, 2011), pp. 83–91Google Scholar
  18. 18.
    J. Perlo, F. Casanova, B. Blümich, Science 315, 1110 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    E. Danieli, J. Perlo, B. Blümich, F. Casanova, Angew. Chem. Int. Ed. 49, 4133 (2010)CrossRefGoogle Scholar
  20. 20.
    S.K. Küster, E. Danieli, B. Blümich, F. Casanova, Phys. Chem. Chem. Phys. 13, 13172 (2011)CrossRefGoogle Scholar
  21. 21.
    P. Benjumea, J.R. Agudelo, A.F. Agudelo, Energy Fuels 25, 77 (2011)CrossRefGoogle Scholar
  22. 22.
    H.B. Bucy, M.E. Baumgardner, A.J. Marchese, Algal Res. 1, 57 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yamila Garro Linck
    • 1
  • M. H. M. Killner
    • 1
    • 2
  • E. Danieli
    • 1
  • B. Blümich
    • 1
  1. 1.Institut für Technische Chemie und Makromolekulare ChemieRWTH Aachen UniversityAachenGermany
  2. 2.Instituto de Química, UnicampCampinasBrazil

Personalised recommendations