Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 43–58 | Cite as

Quantum Mechanical Simulation of Cross Effect DNP Using Krylov–Bogolyubov Averaging

  • Alexander Karabanov
  • Grzegorz Kwiatkowski
  • Walter Köckenberger


Krylov–Bogolyubov averaging is applied to reduce the dimension in quantum mechanical simulations of the cross effect dynamic nuclear polarization experiment. The exact form of the averaged master equation, describing the polarization dynamics of individual nuclear spins, is provided. The relevant relaxation superoperator is derived in the conventional product basis avoiding the diagonalization of the Hamiltonian for the purpose of finding its eigenbasis. Furthermore, we show that it is sufficient to retain the relaxation terms arising from the full set of electron Zeeman states and the terms arising from paramagnetic relaxation of the nuclear spins for deriving the relaxation superoperator. The subspace of the Liouville space to which the spin dynamics can be confined by the averaging procedure is identified. In addition, it is demonstrated that the state space can be truncated at a low spin correlation order, thus reducing the dimensions even further. Numerical results, illustrating the theory, are presented.


Spin Chain Dipolar Coupling Dynamic Nuclear Polarization Spin Dynamic Transverse Relaxation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge many stimulating discussions with Professor Shimon Vega (Weizmann Institute of Science, Rehovot, Israel). This work is supported by the EPSRC (EP/I027254/1).


  1. 1.
    T. Prisner, W. Köckenberger, Appl. Magn. Reson. 34, 213–218 (2008)Google Scholar
  2. 2.
    R.G. Griffin, T. Prisner, Phys. Chem. Chem. Phys. 12, 5737–5740 (2010)Google Scholar
  3. 3.
    D. Hall, D. Maus, G. Gerfen, S. Inati, L. Becerra, F. Dahlquist, R. Griffin, Science 276, 930–932 (1997)Google Scholar
  4. 4.
    M. Rosay, L. Tometich, S. Pawsey, R. Bader, R.Schauwecker, M. Blank, P.M. Borchard, S.R. Cauffman, K.L. Felch, R.T. Weber, R.J. Temlin, R.G. Griffin, W.E. Maas, Phys. Chem. Chem. Phys. 12, 5850–5859 (2010)Google Scholar
  5. 5.
    A.B. Barnes, B. Corzilius, M.L. Mak-Jurkauskas, L.B. Andreas, V.S. Bajaj, Y. Matsuki, M.L. Belenky, J. Lugtenburg, J.R. Sirigiri, R. Temkin, J. Herzfeld, R.G. Griffin, Phys. Chem. Chem. Phys. 12, 5861–5867 (2010)Google Scholar
  6. 6.
    P. Abragam, W. Proctor, C.R. Acad. Sci. 246, 2253 (1959)Google Scholar
  7. 7.
    C.D. Jeffries, Phys.Rev.Google Scholar
  8. 8.
    C.F. Hwang, D.A. Hill, Phys.Rev.Lett.Google Scholar
  9. 9.
    A.V. Kessenikh, V.I. Lushchikov, A.A. Manenkov, Y.V. Taran, Sov. Phys. Solid State 5, 321–329 (1963)Google Scholar
  10. 10.
    A.V. Kessenikh, A.A. Manenkov, G.I. Pyatnitskii, Sov. Phys. Solid State 6, 641–643 (1964)Google Scholar
  11. 11.
    K.-N. Hu, H.Yu, T. Swager, R.G. J, Am.Google Scholar
  12. 12.
    Y. Matsuki, T. Maly, O. Ouari, H. Karoui, F. Le Moigne, E. Rizzato, S. Lyubenova, J. Herzfeld, T. Prisner, R.G. Griffin, Angew. Chem. Int. Ed. 48, 4996–5000 (2009)Google Scholar
  13. 13.
    C. Song, K.-N. Hu, C.-G. Joo, T.M. Swager, R.G. Griffin, J. Am.Google Scholar
  14. 14.
    C. Ysacco, E. Rizzato, M.-A. Virolleaud, H. Karoui, A. Rockenbauer, F. Le Moigne, D. Siri, O. Ouari, R.G. Griffin, P. Tordo, Phys. Chem. Chem. Phys.Google Scholar
  15. 15.
    Y. Hovav, A. Feintuch, S. Vega, JMR 214 Google Scholar
  16. 16.
    A. Karabanov, A. van der Drift, L.J. Edwards, I. Kuprov, W. Köckenberger, Phys. Chem. Chem. Phys. 14, 2658–2668 (2012)Google Scholar
  17. 17.
    N.M. Krylov, N.N. Bogoliubov, Introduction to nonlinear mechanics.Google Scholar
  18. 18.
    N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic Methods In The Theory Of Non-Linear Oscillations.Google Scholar
  19. 19.
    A. Karabanov, I. Kuprov, G. Charnock, A. van der Drift, L. Edwards, W. Köckenberger, J. Chem. Phys. (2011)Google Scholar
  20. 20.
    Y. Hovav, A. Feintuch, S. Vega, J. Magn. Reson. 207, 176–189 (2010)Google Scholar
  21. 21.
    M.H. Levitt, L. Di Bari (1992) . Phys.Google Scholar
  22. 22.
    N. Bloembergen, Physica 15, 386 (1949)Google Scholar
  23. 23.
    A. Abragam, Principles of Nuclear Magnetism, (Clarendon Press, Oxford, 1961)Google Scholar
  24. 24.
    V.I. Arnold, V.V. Kozlov, A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. (Springer, Berlin, 2006)MATHGoogle Scholar
  25. 25.
    M. Hogben, M. Krzystyniak, G.T.P. Charnock, P.J. Hore, I. Kuprov, J. Magn. Reson. 208, 179194 (2011)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alexander Karabanov
    • 1
  • Grzegorz Kwiatkowski
    • 1
  • Walter Köckenberger
    • 1
  1. 1.Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK

Personalised recommendations