Advertisement

Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 59–68 | Cite as

Dynamic Nuclear Polarization by Thermal Mixing Under Partial Saturation

  • Sami JanninEmail author
  • Arnaud Comment
  • J. J. van der Klink
Article

Abstract

We describe a low-temperature thermodynamic model for dynamic nuclear polarization (DNP) via continuous-wave partial saturation of electron spin resonance (ESR) lines that are both homogeneously and inhomogeneously broadened. It is a variant of a reasoning proposed by Borghini, which in turn used Redfield’s thermodynamic treatment of saturation. Our variant is furthermore based on Provotorov’s insight that under partial saturation of a coupled-spin system two distinct spin temperatures should appear in a thermodynamical theory. We apply our model to DNP results obtained at a temperature of 1.2 K and in magnetic fields of 3.35 and 5 T on 1-13C labeled sodium acetate dissolved in a frozen D2O/ethanol-d6 solution doped with the free radical TEMPO.

Keywords

Electron Spin Resonance Microwave Power Lattice Relaxation Dynamic Nuclear Polarization Electron Spin Resonance Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to acknowledge Dr. Ben van den Brandt, Dr. J. A. (Ton) Konter and Dr. Patrick Hautle of the Paul Scherrer Institute for the design and construction of the DNP cryostat. This work was supported by the Swiss National Science Foundation (Grants No. 200021-109479 and PP00P2_133562). Part of the experimental work was done while the authors were in the Laboratory of the Physics of Nanostructured Materials (LPMN) of the EPFL. Sami Jannin additionally acknowledges support from Prof. Geoffrey Bodenhausen, the Commission pour la Technologie et l’Innovation (CTI Grant 9991.1 PFIW-IW), and SNF (Grant No. 200020-124694).

References

  1. 1.
    A. Abragam, M. Goldman, Nuclear magnetism: order and disorder. Int. Ser. Monographs. Phys. (Clarendon Press, Oxford, 1982)Google Scholar
  2. 2.
    V.A. Atsarkin, Dynamic nuclear-polarization in dielectric solids. Uspekhi. Fizicheskikh. Nauk. 126(1), 3–39 (1978)Google Scholar
  3. 3.
    A.G. Redfield, Nuclear magnetic resonance saturation and rotary saturation in solids. Phys. Rev. 98(6), 1787–1809 (1955)ADSCrossRefGoogle Scholar
  4. 4.
    B.N. Provotorov, Magnetic resonance saturation in crystals. Sov. Phys. JETP 14(5), 1126–1131 (1962)MathSciNetGoogle Scholar
  5. 5.
    M. Borghini, Spin-temperature model of nuclear dynamic polarization using free radicals. Phys. Rev. Lett. 20(9), 419 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    S. Mango, Early target material research with chemical dopants. Nucl. Instrum. Meth. A 526(1–2), 1–6 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. P. Natl. Acad. Sci. USA 100(18), 10158–10163 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    W.D. Boer, Dynamic orientation of nuclei at low-temperatures. J. Low Temp. Phys. 22(1–2), 185–212 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    S. Jannin, A. Comment, F. Kurdzesau, J.A. Konter, P. Hautle, B. van den Brandt, J.J. van der Klink, A 140 GHz prepolarizer for dissolution dynamic nuclear polarization. J. Chem. Phys. 128(24), 241102 (2008)Google Scholar
  10. 10.
    F. Kurdzesau, B. van den Brandt, A. Comment, P. Hautle, S. Jannin, J.J. van der Klink, J.A. Konter, Dynamic nuclear polarization of small labelled molecules in frozen water-alcohol solutions. J. Phy. D. Appl. Phy. 41(15), 155506 (2008)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sami Jannin
    • 1
    Email author
  • Arnaud Comment
    • 2
  • J. J. van der Klink
    • 2
  1. 1.Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Institute of Physics of Biological SystemsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations