Advertisement

Applied Magnetic Resonance

, Volume 43, Issue 1–2, pp 181–194 | Cite as

Simplified THz Instrumentation for High-Field DNP-NMR Spectroscopy

  • Thorsten MalyEmail author
  • Jagadishwar R. Sirigiri
Article

Abstract

We present an alternate simplified concept to irradiate a nuclear magnetic resonance sample with terahertz (THz) radiation for dynamic nuclear polarization (DNP) experiments using the TE01 circular waveguide mode for transmission of the THz power and the illumination of the DNP sample by either the TE01 or TE11 mode. Using finite element method and 3D electromagnetic simulations we demonstrate that the average value of the transverse magnetic field induced by the THz radiation and responsible for the DNP effect using the TE11 or the TE01 mode are comparable to that generated by the HE11 mode and a corrugated waveguide. The choice of the TE11/TE01 mode allows the use of a smooth-walled, oversized waveguide that is easier to fabricate and less expensive than a corrugated waveguide required for transmission of the HE11 mode. Also, the choice of the TE01 mode can lead to a simplification of gyrotron oscillators that operate in the TE0n mode, by employing an on-axis rippled-wall mode converter to convert the TE0n mode into the TE01 mode either inside or outside of the gyrotron tube. These novel concepts will lead to a significant simplification of the gyrotron, the transmission line and the THz coupler, which are the three main components of a DNP system.

Keywords

Nuclear Magnetic Resonance Spectroscopy Dynamic Nuclear Polarization Whisper Gallery Mode Mode Converter Corrugate Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partly supported by a SBIR Phase I grant from the National Cancer Institute of the United States National Institutes of Health (CA154217) and internal R&D of Bridge12 Technologies, Inc.

References

  1. 1.
    A.W. Overhauser, Phys. Rev. 92, 411–415 (1953)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    T.R. Carver, C.P. Slichter, Phys. Rev. 102, 975–980 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    T.R. Carver, C.P. Slichter, Phys. Rev. 92, 212–213 (1953)ADSCrossRefGoogle Scholar
  4. 4.
    T. Maly et al., J. Chem. Phys. 128, 052211–052219 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J. Ardenkjær-Larsen et al., Proc. Nat. Aca. Sci. USA 100, 10158–10163 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    P. van der Wel et al., J. Am. Chem. Soc. 128, 10840–10846 (2006)CrossRefGoogle Scholar
  7. 7.
    V.S. Bajaj et al., Proc. Nat. Aca. Sci. USA (2009)Google Scholar
  8. 8.
    V.S. Bajaj et al., J. Magn. Reson. 202, 9–13 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Matsuki et al., Phys. Chem. Chem. Phys. 12, 5799–5803 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Rosay et al., Phys. Chem. Chem. Phys. 12, 5850–5860 (2010)CrossRefGoogle Scholar
  11. 11.
    E. Salnikov et al., J. Am. Chem. Soc. 132, 5940–5941 (2010)CrossRefGoogle Scholar
  12. 12.
    M.J. Bayro et al., J. Am. Chem. Soc. 133, 13967–13974 (2011)CrossRefGoogle Scholar
  13. 13.
    T. Jacso et al., Angew Chem Int Ed, n/a-n/a (2011)Google Scholar
  14. 14.
    R. Kausik, S. Han, Phys. Chem. Chem. Phys. 13, 7732–7746 (2011)CrossRefGoogle Scholar
  15. 15.
    O. Lafon et al., Angew Chem. Int. Ed. 50, 8367–8370 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Field et al., in Vacuum Electronics Conference (IVEC) (2010 IEEE International, 2010)Google Scholar
  17. 17.
    M. Thumm, IEEE Trans. Plasma Sci. 39, 971–979 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    V.L. Granatstein, R.K. Parker, C.M. Armstrong, Proc. IEEE 87, 702–716 (1999)CrossRefGoogle Scholar
  19. 19.
    R.K. Parker et al., IEEE Trans. Microw. Theo. Tech. 50, 835–845 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    V.S. Bajaj et al., J. Magn. Reson. 190, 86–114 (2007)Google Scholar
  21. 21.
    K.L. Felch et al., Proc. IEEE 87, 752–781 (1999)CrossRefGoogle Scholar
  22. 22.
    P.J. Allen et al., J. Magn. Reson. 92, 614–617 (1991)Google Scholar
  23. 23.
    A. Barnes et al., J. Magn. Reson. 198, 261–270 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    K.J. Pike et al., J Magn Reson (2012) (in press)Google Scholar
  25. 25.
    K.R. Thurber, W.-M. Yau, R. Tycko, J. Magn. Reson. 204, 303–313 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    B.D. Armstrong et al., Phys. Chem. Chem. Phys. 12, 5920–5926 (2010)CrossRefGoogle Scholar
  27. 27.
    T. Idehara et al., J. Infrared Millim. Te. 31, 763–774 (2010)CrossRefGoogle Scholar
  28. 28.
    M.K. Hornstein et al., IEEE Trans. Electron Devices 52, 798–807 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    V.A. Flyagin et al., IEEE Trans. Microw. Theo. Tech. 25, 514–521 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    J.L. Doane, Fusion Sci. Technol. 53, 159–173 (2008)Google Scholar
  31. 31.
    M. Afeworki, R.A. McKay, J. Schaefer, Macromolecules 25, 4084–4091 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    R.A. Wind et al., J. Magn. Reson. 52, 424–434 (1983)Google Scholar
  33. 33.
    V. Weis et al., J. Magn. Reson. 140, 293–299 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    M. Bennati et al., J. Magn. Reson. 138, 232–243 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    L.R. Becerra et al., J. Magn. Reson. A117, 28–40 (1995)Google Scholar
  36. 36.
    K.J. Pike et al., J. Magn. Reson. 215, 1–9 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    K. Ohkubo et al., Int. J. Infrared Millim. Waves 18, 23–41 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    M.K. Hornstein, A Contionus-Wave Second Harmonic Gyrotron Oscillator at 460 GHz, in Department of Electrical Engineering and Computer Science (Massachusetts Institute of Technology, Cambridge, 2005)Google Scholar
  39. 39.
    M. Hornstein et al., IEEE Trans. Plasma Sci. 34, 524–533 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    P.P. Woskov et al., IEEE Trans. Microw. Theo. Tech. 53, 1863–1869 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    E. de Rijk et al., Rev. Sci. Instrum. 82, 066102 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    J.L. Doane, C.P. Moeller, Int. J. Electron 77, 489–509 (1994)CrossRefGoogle Scholar
  43. 43.
    E.A.J. Marcatili. Miter elbow for circular electric mode. in Symposium on Quasi-Optics, Polytechnic Press (1964)Google Scholar
  44. 44.
    M.A. Shapiro et al., Fusion Sci. Technol. 57, 196–207 (2010)Google Scholar
  45. 45.
    P.F. Goldsmith, Quasioptical systems: Gaussian beam quasioptical propagation and applications (IEEE Press/Champman & Hall Publishers 1998)Google Scholar
  46. 46.
    E.A. Nanni et al., J. Magn. Reson. 210, 16–23 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Singel et al., J. Magn. Reson. 81, 145–161 (1989)Google Scholar
  48. 48.
    A.C. Torrezan et al., IEEE Trans. Electron Devices 58, 2777–2783 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    A.C. Torrezan et al., Presented at the International Conference on Vacuum Elec. Monterey, CA, 18–21 May 2010Google Scholar
  50. 50.
    J.R. Sirigiri, T. Maly, L. Tarricone, in Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011 36th International Conference on. 2011Google Scholar
  51. 51.
    S.N. Vlasov, I.M. Orlova, Radiophys. Quantum Electron 17, 115–119 (1974)ADSCrossRefGoogle Scholar
  52. 52.
    G.G. Denisov et al., Int. J. Electron 72, 1079–1091 (1992)CrossRefGoogle Scholar
  53. 53.
    C. Joye et al., IEEE Trans. Plasma Sci. 34, 518–523 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    C. Moeller, in Proceedings of the Second US Gyrotron Conference, UK, 21–23 June 1982Google Scholar
  55. 55.
    M. Thumm, Int. J. Electron 57, 1225–1246 (1984)CrossRefGoogle Scholar
  56. 56.
    M. Thumm et al., Int. J. Infrared Millim. Waves 6, 459–470 (1985)ADSCrossRefGoogle Scholar
  57. 57.
    A.C. Torrezan et al., IEEE Trans. Plasma Sci. 38, 1150–1159 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    M.K. Thumm, W. Kasparek, IEEE Trans. Plasma Sci. 30, 755–786 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Bridge12 Technologies, Inc.FraminghamUSA

Personalised recommendations